

Client: Government Of Ghana Ministry Of Water Resources, Works and Housing

Morphologic modelling of the Coastal evolution in Ada, Ghana

Annelies Bolle, Bart Verheyen, Vincent Gruwez, Philippe De Schoesitter, Nicolas Zimmermann, Peter Wauters, <u>Gijsbert van Holland</u>

Project Management

subcontractor:

SE IN WATER

Responsibilities of the Engineer

16 June 2014 / ICCE 2014 / slide 7

eoul, Korea June 15-20 2014

Longterm coastal evolution with LITPACK

Objectives:

- <u>Reproduce observed erosion</u>
- Predict long-term coastline evolution
- Optimize groyne & nourishment design 1.05
- Determine longitudinal spacing, and
- the length of the groynes (bypassing)

Longterm coastal evolution with LITPACK

Objectives:

- <u>Reproduce observed erosion</u>
- Predict long-term coastline evolution
- Optimize groyne & nourishment design 1.05
- Determine longitudinal spacing, and

16 June 2014 / ICCE 2014 / slide 9

• the length of the groynes (bypassing)

Longterm coastal evolution with LITPACK

Objectives:

eoul. Korea June 15-20 201

- <u>Reproduce observed erosion</u>
- Predict long-term coastline evolution
- Optimize groyne & nourishment design 1.05
- Determine longitudinal spacing, and

16 June 2014 / ICCF 2014 / slide 10

• the length of the groynes (bypassing)

Hindcast morphological evolution: XBeach 2DH

Objectives:

- Hindcast of construction phases groynes A & B (phase 1 area)
- Reproduce the strong local erosion East of groyne A
- Identify the most important erosion processes
- Forecast (phase 2 area)

x 10⁵

Bathymetry and topography [m LAT]: start

bathytopo [m LAT]

Breakwater (groyne) design

Phase 1: June 2012 – May 2013 Phase 2: under construction

Some details:

- crest width of 3,5m
- side slopes of 1 on 3
- 1m filter of a gravel (5-40mm) and rock (1-300kg)
- groyne of 2-4t rock
- perpendicular core layer of 1-300kg rock to reduce permeability and increase sand trapping.

Breakwater (groyne) design

Phase 1: June 2012 – May 2013 Phase 2: under construction

Some details:

- crest width of 3,5m
- side slopes of 1 on 3
- 1m filter of a gravel (5-40mm) and rock (1-300kg)
- groyne of 2-4t rock
- perpendicular core layer of 1-300kg rock to reduce permeability and increase sand trapping.

Thank you for your attention and see you in the lobby!

ada coastline **groynes** beach calibrated **COAStal** protection trapping wave nourishment predict modelling design calibrated cross-shore erosion time-dependent permeability constructed dune **imdc** evolution layer measured profile flow ghana nearshore physical slope term Volta filter processes delta engineering gravel **rock** hindcast overwash report conditions core **litpack** events heightened hydraulics important international morphodynamic xbeach phase surfzone works parameters morphological

contact: Gijsbert van Holland, gvh@imdc.be

June 2014 / ICCE 2014 / slide 14

