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INCOMPRESSIBLE SMOOTHED PARTICLE HYDRODYNAMICS (ISPH) MODELLING OF 

BREAKWATER OVERTOPPING 
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1
, Maël Morellec2, Peter K. Stansby1, Alex Skillen1   

This paper describes an investigation into using incompressible smoothed particle hydrodynamics (ISPH) to simulate 

the overtopping of a coastal structure such as a breakwater.  The paper presents the ISPH formulation that employs 

the multiple boundary tangent method and the latest developments such as particle shifting that produce noise-free 

pressure fields.  The numerical model is compared with experimental overtopping data for a solitary wave and a 

crest-focussed wave group approaching a trapezoidal breakwater.  The ISPH model is shown to produce close 

agreement for the free-surface evolution for both types of wave and generates overtopping volumes in satisfactory 

agreement with experimental data. Closer agreement with experimental data is obtained for ISPH compared to more 

popular weakly compressible SPH for the same resolution or particle size.  Future work identifies conducting a 

convergence study and using more sophisticated boundary treatments. 
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INTRODUCTION  

At present, engineers possess mainly empirical means to predict the overtopping of coastal 

protection structures.  The modelling and simulation of such highly nonlinear and potentially violent 

free-surface motion is an extremely challenging task with numerous difficulties.  In this work, we 

examine the behaviour of violent wave overtopping processes using truly incompressible smoothed 

particle hydrodynamics (SPH). 

SPH describes a fluid by replacing its continuum properties with locally smoothed quantities at 

discrete Lagrangian locations.  Thus, the domain can be multiply-connected with no special treatment of 

the free surface, making it ideal for examining complicated flow situations.   

SPH has become increasingly popular in recent years as a novel technique to model the violent 

hydrodynamics in wave breaking, etc. (Rogers and Darlymple 2006).  However, the vast majority of 

SPH schemes are based on the weakly compressible SPH (WCSPH) formulation where the density is 

allowed to vary slightly so that compressibility effects are kept within 1%.  This is generally acceptable 

for engineering computations (Rogers et al. 2010), but can lead to severe problems when predicting 

impact pressures while the propagation of waves can exhibit significant decay and dissipation. 

In Manchester, we have been developing a truly incompressible SPH (ISPH) scheme where a 

pressure Poisson equation is solved to predict pressure fields.  A novel shifting algorithm has 

effectively eliminated unphysical diffusion at the free-surface leading to accurate noise-free pressure 

fields for a range of test cases including periodic waves, impulsively moving plates, and slam problems 

(Lind et al. 2012, Skillen et al. 2013).  For the simulation of overtopping, previous work using the 

weakly compressible approach (Stansby et al. 2008) produced close agreement with experimental data 

for solitary waves.  The application of ISPH to overtopping is the next important step in the 

development of this method.  

In this paper, first we introduce the SPH discretisation.  This includes a short description of the 

methodology for enforcing strict incompressibility within SPH.  The next section presents the numerical 

results for two cases of a solitary wave and a crest-focussed wave group overtopping a breakwater.  

Comparisons with experimental data for overtopping the breakwater are presented. 

 

INCOMPRESSIBLE SPH MODEL 

SPH Methodology 

Smoothed Particle Hydrodynamics (SPH) is based on the approximate representation of continuous 

interpolations or integrals by a discrete particle representation.  The value of a flow quantity, ϕ, at a 

position vector r is approximated by a local summation  

                                                           

 
1
 School of Mechanical, Civil and Aerospace Engineering, University of Manchester, Manchester, M13 9PL, UK 

2
 Enseignement Supérieur à l’Ecole Normale Supérieure de Cachan, France 



 COASTAL ENGINEERING 2014 

 

2 

    
j

jjj V rrr  , 
(1) 

where Vj is the volume of the jth particle located at rj with scalar quantity ϕj, and  
jrr   is the 

weighting function called the smoothing kernel.  The kernel is specified prior to simulation by an 

analytical expression making its computation straightforward.  In all results presented, a fifth-order 

spline kernel has been used (Lind et al. 2012).  The kernel has a characteristic smoothing length, h, 

which defines the region of influence, and is preset to be 1.3x for the duration of all simulations where 

x is the initial particle spacing. 

In SPH function derivatives can be expressed as another summation by simply using a derivative of 

the smoothing kernel, i.e. 
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where  
jiij WW rr  .  This avoids complicated expressions for calculating derivatives since an 

analytical expression is known for the specified kernel.  Expression (2) also ensures that there is zero 

divergence for a uniformly constant field.  

 

Governing Equations 

Herein, we solve the incompressible Navier-Stokes equations in Lagrangian form such that the 

divergence of the velocity field is zero 0 u  where u is the velocity.  The conservation of 

momentum is therefore written as: 
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where P is pressure, ρ is density, ν is viscosity, t is time and g is gravity. Incompressibility is enforced 

using a pressure Poisson equation.  Using a fractional step method, the pressure gradient term is 

discretized according to:  
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where W represents the corrected kernel gradient as used by Lind et al. (2012).  The viscous and gravity 

terms are discretised as 
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Pressure Projection Method 

The solution of the pressure gradient term follows the approach first suggested by Cummins and 

Rudman (1999) for SPH.  To solve Eq. (3), the solution first advects the particles to an intermediate 

location  
n
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An intermediate velocity, *

iu , based on viscosity and body forces is then computed  

  tn

i

n

ii  guuu
2*   (7) 

The pressure at time level n+1 is computed from the Pressure Poisson equation 
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This produces a matrix equation which is solved using a Bi-CGSTAB method. (van der Vorst 1992). 

This enables the projection of *

iu  onto the divergence-free space giving the velocity at time n+1:  
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The particles’ positions are then updated using a centred time integration scheme 
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Particle Shifting 

The pressure projection approach of Cummins and Rudman (1999) has been shown to be unstable for 

irregular particle distributions (Xu et al. 2009).  Lind et al. (2012) and Skillen et al. (2013) have shown 

that noise-free pressure fields for free-surface flow can be computed by shifting particles a small 

distance δri according to the gradient of the local concentration of the particles C:  

ii CDr  (11) 

where D is a local diffusion coefficient.  The diffusion coefficient is a numerical parameter evaluated 

according to the maximum timestep:  

max
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where ∆tmax is provided by a CFL condition:  
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where Umax is the maximum particle velocity.  In order to prevent the particles being shifted either 

beyond or too close to each other, the shifting distance, δri, is restricted to a maximum value of 0.2h. 

 

A measure of the particle concentration can be computed from the sum of the kernel function:  
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So the gradient of the concentration is given by  
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where fab is a tensile correction term (Lind et al. 2012).  The hydrodynamic variables are finally 

corrected by a Taylor series approximation. 

Boundary Treatment 

The original SPH method does not include the presence of boundaries naturally since the particle 

approximation in Eq. (1) is only a volume integral and does not account for the missing kernel support 

in the vicinity of boundaries.  There have been many different treatments for boundaries proposed in 

SPH (see Ferrand et al. 2012 for a comparison of some popular methods).  In this work, we use the 

multiple boundary tangent (MBT) method of Yildiz et al. (2009).  In the MBT approach, a fluid 

particle will interact with a wall particle, wi. A tangent at wi is computed and then a localized mirror 

image of the fluid particles is generated using that tangent line as shown in Fig. 1 for different cases.  

For overlapping mirror images, the mass of each particle is adjusted so as to maintain a physical correct 

volume.   

 

Figure 1   Multiple boundary tangent (MBT) method (Yildiz et al. 2009) for generating localised mirror images 

for different cases 
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NUMERICAL RESULTS 

Hunt Raby et al. (2011) conducted experiments measuring wave-by-wave overtopping of a trapezoidal 

structure for both solitary waves and focused wave groups.  Based on these experiments, the geometry for 

the ISPH simulations is shown in Fig. 2 where the water is of depth 0.5 m and the particle size or 

resolution is 0.01 m.  A paddle at the left-hand side generates waves that propagate over the beach towards 

the trapezoidal structure. 

 

 
Figure 2   Geometry for UKCRF experiments and ISPH simulations 

   

Solitary Wave Overtopping 

In Fig. 3, we can see a comparison for the free surface at different time instants with (a) a 

Boussinesq-type model, a weakly compressible SPH model (Stansby et al. 2008) and (b) ISPH for 

solitary wave.  The solitary wave has a height of 0.1 m and is generated in the SPH simulations using 

the Goring (1978) wavemaker.  The agreement between the computed ISPH results and other numerical 

predictions results is close, but there are differences which will be the focus of future investigation.  
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(a) Profiles from Stansby et al. (2008) (b) Results from ISPH 

Figure 3   Surface profiles for a solitary wave at  t = 8s, t = 9s, t = 10s 

 

Fig. 4 shows the time history of the free surface at the toe of the beach comparing the Boussinesq-

type model of Stansby et al. (2008) with ISPH.  The agreement of the peak elevation is reasonable with 

a difference of approximately 5% while the ISPH result predicts slightly more fluctuations. 

 

Fig. 5 shows the water height of the overtopping flow at the seaward corner of the structure.  The 

left-hand image displays the results reported by Stansby et al. (2008) for WCSPH, Boussinesq and 

experiments of Hunt Raby et al. (2011).  The experiments of Hunt Raby et al. (2011) gave an 

overtopping height of approximately 0.06m. The ISPH results predict an overtopping height of 
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approximately 0.08 m while WCSPH results gave an overtopping height of 0.061 m and the Boussinesq 

results overpredict the height with 0.083 m.  With such a violent process however, it is possible that the 

measurement of the overtopping height may contain unquantified variability requiring further 

investigation. 

 

Fig. 6 shows a time history for the predicted overtopping volume.  The ISPH results for the 

overtopping volume give 40 litres/m, which are in general agreement with the experimental value of 31 

litres/m, but are overestimated for this low resolution.  The agreement of ISPH with the experiment data 

is better than for a weakly compressible model, 20 litres/m for WCSPH at the same resolution (or 

particle size) of 0.01 m. 

 

 

 

 

 
 

 

(a)  Profiles from Stansby et al. (2008) (b)  Results from ISPH 

Figure 4   Solitary wave free surface time histories at toe of beach 

 

 
solid line (-): experiment, dashed line: (- -) Boussinesq 
scheme, dotted line: (...) WCSPH, diamonds: (◊) VOF 

 

 
 

 

(a)  Profiles from Stansby et al. (2008) (b)  Results from ISPH 

Figure 5   Solitary wave overtopping water height 

 

 
Figure 6    Overtopping history for ISPH for solitary wave 
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Focussed Wave Group Overtopping 

Hunt Raby et al. (2011) also conducted tests with focused wave groups.  Herein, we present the 

results from ISPH for one of the cases where the wave was designed to come into focus immediately 

above the beach toe.  The water level was measured at five wave gauges labelled in this paper as WG1 

to WG5 as shown in Fig. 7. 

 

 
 

Figure 7    wave gauge location for focussed wave group overtopping 

 

Fig. 8 shows a comparison of the measured free surface at each wave gauge and the free surface 

predicted by ISPH using the same resolution of 0.01 m (note that the vertical scales shown for the 

experimental and numerical results are not the same).  The agreement is reasonable except when the 

focused wave group reaches WG5 which is located in the breaking region where the measurements will 

have included the aeration, where there is some oscillation evident in the ISPH results.   
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 (a) Profiles from Hunt Raby et al. (2011) (b) Results from ISPH 

 Figure 8   Focussed wave group free-surface profiles at wave gauges WG1-5  

(note: vertical axes are not on same scale, bottom axes represent time in seconds) 

 

Finally, Fig. 9 shows the time history of the overtopping volume predicted by ISPH where there 

are two clear overtopping events in agreement with experimental observations and the final overtopping 
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volume predicted by ISPH is 9.8 litres/m compared to 12 litres/m measured in the experiments.  The 

equivalent WCSPH scheme produced no overtopping whatsoever for this resolution.  

 

 
Figure 9    Overtopping volume history for focussed wave groups 

 

Discussion on boundary conditions 

The ISPH simulations presented here used the multiple boundary tangent method (Yildiz et al. 

2009).  The results presented show satisfactory agreement with the experimental data of Hunt Raby et 

al. (2011), however, the simulations proved to be quite sensitive during development of this 

application, particularly when shifting was occurring near where the free surface meets a wall or 

boundary such as next to the paddle or the shallowest water.  Boundary conditions have proven to be a 

difficult challenge in SPH as evidence by their identification as a Grand Challenge by the SPH 

European Research Interest Community (SPHERIC 2014).  More recent developments could improve 

the robustness of the simulations, such as Ferrand et al. (2012) with the semi-analytical approach or 

Fourtakas et al. (2014) with a moving uniform stencil.  

 

CONCLUSIONS 

This paper has presented the application of an incompressible SPH numerical scheme to the 

overtopping of breakwaters using the latest formulation improvements for ISPH including particle 

shifting.  The paper has presented investigations into the modelling of different wave types including 

solitary waves and crest focussed wave groups looking at the hydrodynamics of the overtopping process 

in the vicinity of the obstacle with an improved ISPH formulation.  The results for only one resolution 

(or particle size) have been presented but the results compare favourably with more established 

WCSPH models, and in the case of focussed wave group overtopping, the ISPH predicted overtopping 

in satisfactory agreement with the experimental data where the WCSPH scheme produced no 

overtopping whatsoever.  In future work, more recent developments in solid wall boundary treatments 

will be introduced which will improve the robustness of the scheme. 

 

 

ACKNOWLEDGMENTS 

The authors would like to thank EDF R&D for the financial support for the second author. 

REFERENCES 

Dalrymple, R.A. and Rogers, B.D., “Numerical Modeling of Water Waves with the SPH Method”, 

Coastal Engineering, 53(2-3), 141-147, 2006. 

Cummins S.J., Rudman M., “An SPH projection method”, J. Comput. Phys. 152, 584–607, 1999. 

Ferrand M, Laurence D R P, Rogers B D, Violeau D, Kassiotis C. "Unified semi-analytical wall 

boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method.". 

International Journal for Numerical Methods in Fluids. Vol. 71. Issue 4, 446-472, 2013. 

Fourtakas G., Dominguez J. M., Vacondio R., Nasar A., Rogers, B.D., “Local Uniform STencil (LUST) 

boundary conditions for 3-D irregular boundaries in DualSPHysics”, Proc. 9
th

 Int. SPHERIC 

Workshop, Paris, 103-110, 2014.  



 COASTAL ENGINEERING 2014 

 

8 

Goring D.G., “Tsunamis – The propagation of long waves ont a shelf”, PhD thesis, California Institute 

of Technology, 1978. 

Hunt-Raby A., Borthwick A.G.L., Stansby P.K., Taylor P.H.. "Experimental measurement of focused 

wave group and solitary wave overtopping". J. Hydraulic Research, 49(4). 450-464, 2011. 

Lind S.J, Xu R, Stansby P.K, Rogers B.D. "Incompressible Smoothed Particle Hydrodynamics for Free-

Surface flows: A Generalised Diffusion-Based Shifting for Stability and Validations for Impulsive 

Flows and Propagating Waves". J. Comp. Phys. 231(4), 1499-1523, 2012. 

Rogers, B.D., Dalrymple, R.A. and P.K. Stansby, “Simulation of Caisson Breakwater Movement using 

2-D SPH”, J. Hydraulic Research, Special Issue, 2010. 

Skillen A., Lind S.J., Stansby P.K., Rogers B.D. "Incompressible Smoothed Particle Hydrodynamics 

(SPH) with reduced temporal noise and generalised Fickian smoothing applied to body-water slam 

and efficient wave-body interaction". Computer Methods in Applied Mechanics and Engineering, 

265, 163–173, 2013.  

SPHERIC, “SPHERIC Grand Challenge Working Group” 

https://wiki.manchester.ac.uk/spheric/index.php/SPH_Theory_Working_Group, accessed 29 

September 2014. 

Stansby P. K., Xu R., Rogers B.D., Hunt-Raby A., Borthwick A.G.L., Taylor P.H. "Modelling tsunami 

overtopping of a sea defence by shallow-water Boussinesq, VOF and SPH methods". Proc. of 

Flood Risk Assessment Conference, Oxford. September 2008. 

van der Vorst, H.A. “Bi-CGSTAB: a fast and smoothly converging variant of BI-CGSTAB for the 

solution of nonsymmetric liear systems”, SIAM J. Sci. Stat. Comput. 13, 631-644, 1992. 

Xu R., Stansby P.K., Laurence D., Accuracy and stability in incompressible SPH (ISPH) based on the 

projection method and a new approach, J. Comput. Phys. 228, 6703–6725, 2009. 

Yildiz M., Rook R.A., Suleman A.. “SPH with the multiple boundary tangent method”,.International 

Journal for Numerical Methods in Engineering, 77(10), 1416-1438, 2009. 

https://wiki.manchester.ac.uk/spheric/index.php/SPH_Theory_Working_Group

