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EXTENDED BOUSSINESQ EQUATIONS FOR WAVES IN POROUS MEDIA: DERIVATION 
OF GOVERNING EQUATIONS AND GENERATION OF WAVES INTERNALLY 

Changhoon Lee1 Van Nghi Vu2 and Tae-Hwa Jung 3  

In this study we develop a new extended Boussinesq model that predicts the propagation of water waves in porous 
media. The inertial and drag resistances are taken account into the model in which the results are the same with the 
extended Boussinesq equations of Madsen and Sorensen (1992) when these resistances are removed. The developed 
model introduces its simplicity in solving the matching conditions at the permeable breakwater interfaces. The whole 
computational domain can be involved by specifying the porosity equal to unity outside the breakwater and to a value 
below unity inside the breakwater. There is no need for using any matching conditions at the interface. Furthermore, 
the applications of this current developed model are also extended to the cases that waves propagate inside and/or 
over a porous layer. For verification of the developed model, the internal generation of wave technique is applied to 
simulate sinusoidal and cnoidal waves propagating inside porous media in shallow and deep waters and nonlinear 
cnoidal waves interacting with porous breakwater. Numerical results give a good agreement with analytical solutions. 
Transformation of solitary waves to porous breakwater is also carried out. Refraction and transmission of solitary 
waves to the porous breakwater are well captured and verified by available physical experimental data. 

Keywords: internal generation of wave, source function, energy dissipation, porous media, extended Boussinesq 
equations  

INTRODUCTION 
Wave energy dissipation through the rubble-mound breakwater happens by friction of water 

through permeable media and also by turbulence of high speed waters. It is hard to accurately predict 
the energy dissipation because the flow is micro-scale three-dimensional phenomenon. This was 
analytically investigated by Sollitt and Cross (1972). They assumed the flow resistance in the porous 
material is of the type of Forchheimer (1901). They solved for a damping wave component within the 
breakwater and matched boundary conditions at the sea-side and land-side faces of the breakwater to 
predict the reflected and transmitted wave components. An approximate solution to a rubble-mound 
breakwater was formulated in terms of an equivalent rectangular breakwater. Recently, Liu and Li 
(2013) derived a new analytical solution for wave reflection and transmission by a surface-piercing 
porous breakwater based on the classical porous medium model of Sollitt and Cross (1972). The 
advantage of this solution is its simplicity so that they do not need to use complex wave numbers for 
wave motion through porous media. 

The wave dynamics through the rubble-mound breakwater has the following characteristics. There 
exist the regions 1 and 3 which respectively include sea- and land-side faces, of the breakwater. In 
these regions, waves are shoaling on the breakwater face and wave energy is dissipating under the 
breakwater face. In region 2 the water surface is inside the breakwater between the regions 1 and 3.  In 
the region 2, wave energy is dissipating through the permeable materials and this region contains 
multiple layers of different permeability, i.e., a layer of crushed stones and a layer of armor units, as 
highlighted in Fig. 1. Energy dissipation through the breakwater would be different depending on the 
direction of incoming waves. 

There are 2 types of governing 
equations to simulate waves propagating 
inside or over permeable layer. The first 
type of is the Boussinesq equations (Cruz 
et al., 1997; Liu and Wen, 1997; Hsiao et 
al., 2002, 2010) while the second type is 
the Navier-Stoke equations (Liu et al., 
1999; del Jesus et al., 2012; Ma et al., 
2014). Both types of governing equations 
consider energy dissipation by friction and 
turbulence. However, the latter is very 
time-consuming to simulate horizontally two-dimensional phenomenon such as refraction and 
diffraction. 

Liu and Wen (1997) and Lynett et al. (2000) developed Boussinesq equations for waves 
propagating inside porous media which considers laminar and turbulent resistances. However, they did 
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Figure 1. Computational domain 
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not consider the inertial effect. When the drag resistance is neglected, this model is reduced to the 
equations of Peregrine (1967) which can be applied only in shallow water. 

In section 2 we develop the Boussinesq equations for waves inside a permeable layer. As our 
review on previous studies, the wave models for permeable layers (Madsen et al., 1997; Kennedy et al., 
2000) do not take into account the characteristics of waves inside the permeable layers such as the 
laminar and turbulent resistances, and the effects caused by the porosity and added mass 
coefficient.  All those characteristics are considered in both Cruz et al.'s and the presently derived 
Boussinesq equations. The developed model is reduced to the equations of Madsen and Sorensen (1992) 
which can be applied in deeper water given that these resistances are neglected. In section 3, the 
authors derive the source function using Green’s function approach to generate waves internally in a 
permeable layer. Section 4 shows some numerical experiments in horizontal 1-dimensional domain to 
verify our developed theory. Numerical results are compared to analytical solutions and physical 
experiments. Sinusoidal, solitary, and cnoidal waves are simulated to propagate inside porous media 
and through a porous breakwater. Section 5 summarize and conclude the present works. 

 

DEVELOPMENT OF EXTENDED BOUSSINESQ EQUATIONS IN POROUS MEDIA 
We apply boundary conditions to develop the Boussinesq equations for 

waves propagating inside porous media in shallow water area and then the 
developed equations are extended to deeper water for more application. 

Setting-up boundary value problem 
The whole domain is vertically divided into the 1st, 2nd,…, and J th-  

layers which are numbered from the top to the bottom layers with different 
porosities, as shown in Fig. 2. The free surface is located at the 1st layer. 

Since the porosity is uniform, the continuity equation inside the j th-  
permeable layer is given by 
 

3 0U jÑ × =  (1) 

where ( ), ,U u v w=  is the seepage velocity vector, ( )3 , ,x y zÑ º ¶ ¶ ¶ ¶ ¶ ¶  is the gradient operator, 
and the subscript j  implies the j th-  layer. The momentum equation inside the j th-  permeable 
layer is given by 

 ( )3
1 0

U j
j j j

d
p gz D I

dt
r

r
+ Ñ + + + =

 (2) 

where jp  is the pore pressure, jD  and jI are the drag and inertial resistance terms, respectively. It 
should be noted that the continuity equation (1) and momentum equation (2) are expressed in terms of 
the seepage velocity of the pore water. Several people defined the drag resistance term differently. 
Ergun (1952) define the drag resistance term in the Forchheimer (1901) type using a volume-averaged 
discharge velocity ( )'U Uj j jl= . In our study, we use Ergun’s definition of D  in terms of the 
seepage velocity instead as 
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D
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é ù- -æ öº +ê úç ÷
è øê úë û

é ù- -æ ö= +ê úç ÷
è øê úë û  (3) 

where la  and ta  are coefficients which represent the laminar and turbulent flow resistances, 
respectively, n  is the kinematic viscosity of water, and d  is the size of the solid. The inertial 
resistance term jI  is given by 

Figure 2. Porous media 
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 ( )( )1 1 U
j

j

dI
dt

l ké ùº - +ê úë û  (4) 

where l  is the porosity, and k  is the added mass coefficient.  
Several people proposed different momentum equations in including the drag and inertial 

resistance terms. Sollitt and Cross’ (1972) momentum equation is the same as the present momentum 
equation (2) except that the convective acceleration is neglected to get a linear solution. Substitution of 
Eqs. (3) and (4) into the present momentum equation (2) gives 

 ( )
3

1 0
U

Uj
j j j j

d
p gz

dt
b r a

r
+ Ñ + + =

 (5) 

where jb  is the inertial coefficient given by 

 
( )( )1 1 1j j

b l kº + - +é ùë û  (6) 

and ja  is the drag coefficient given by 

 
2

2

1 1 1 Uj l t

j
dd

l n la a a
l l

é ù- -æ ö= +ê úç ÷
è øê úë û  (7) 

At the free surface, the dynamic and kinematic boundary conditions are given by 

 1 0,p z h= =  (8) 

 
1 1 ,uw z

t
h h h¶

= + ×Ñ =
¶  (9) 

where ( ),u u vº  is the horizontal velocity vector and ( ),x yÑ º ¶ ¶ ¶ ¶  is the horizontal gradient 
operator. At the impermeable bottom under the lowest J th- layer, the normal velocity vanishes as 

 ( )3 0,U uJ J J J J Jz h w h z h×Ñ + = + ×Ñ = = -  (10) 

At the interface between the j th-  and ( )1j th+ -  layers, both the pore pressures at and normal fluxes 
through the interface are continuous as 
 

1,j j jp p z h+= = -  (11) 

 

( ) ( )1 1 1 ,u uj j j j j j j j jw h w h z hl l + + ++ ×Ñ = + ×Ñ = -
 (12) 

We get the Boussinesq equations by specifying the boundary value problem with a governing 
equation and boundary conditions. The seepage velocity potential is defined as 
 

3U j jº Ñ F  (13) 

The variables are normalized using the relevant characteristic length and time as 
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h h lu u
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hh
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 (14) 

where l  is the wavelength, 0h  is the maximum water depth, a  is the maximum amplitude of the water 
surface elevation, t  is the wave period. When the normalization is applied, the terms in the governing 
equation and boundary conditions will group according to two non-dimensional quantities  

 0

0

,
ha

h l
e m= =

 (15) 

where e  is the nonlinearity parameter and m  is the dispersivity parameter. Omitting the primes for 
convenience, the continuity equation (1) and boundary conditions (8)-(12) become, respectively, 

 

2
2 2

2 0, 1j
j z

z
m eh

¶ F
Ñ F + = - < <

¶  (16) 
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 21
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z t
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¶F ¶æ ö= + ÑF ×Ñ =ç ÷¶ ¶è ø  (18) 
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h
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z
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The velocity potential is assumed to be expressed as a power series in the vertical coordinate given by 

 ( ) ( ) ( ),
0

, , , , , ,
n

j j j n
n

x y z t z h x y x y tj
¥

=

é ùF = +ë ûå
 (22) 

Then, the continuity equation (16) becomes 

 

( )( ) ( )
( )

22
, 2

2 2 2 2
, 1 , 1 ,

1 2 1
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j j n

j j n j j n j n

n n h

n h h n
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+

+ +

é ù+ + + Ñê úë û
é ù+ + Ñ ×Ñ +Ñ + Ñ = =ë û L

 (23) 

and the bottom boundary condition (19) becomes 
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,1 221
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And, the velocity potential functions in the lowest layer ,2 ,3, ,J Jj j L  can be expressed in terms of ,0Jj  

and thus the velocity potential in the bottom layer JF  can be expressed to the order of ( )2O m  as 

 
( ) ( ) ( )

2
2 2 4

,0 ,0 ,02
2J J J J J J Jz h h z h Omj j j mé ùF = - + Ñ ×Ñ + + Ñ +ë û  (25) 

Development of Boussinesq equations for waves inside one permeable layer 
For one permeable layer, all the subscripts j  in the variables are 1j = . Thus, the velocity 

potential given by Eq. (25) becomes 

 
( ) ( ) ( )

2
2 2 4

1 1,0 1 1 1,0 1 1,02
2

z h h z h Omj j j mé ùF = - + Ñ ×Ñ + + Ñ +ë û  (26) 

The momentum equation is obtained by substituting Eq. (26) into the dynamic free-surface boundary 
condition (17) and then applying Ñ  to the resulting equation as 

 ( )
2

2
1 1 1,0 1 1,0 1 1,0 1,0 0

2
u u uu h

t
mb a h eb

é ù¶æ ö+ - Ñ × +Ñ + ×Ñ =ê úç ÷¶è ø ë û  (27) 

where 1,0 1,0u jº Ñ  is the velocity at the bottom. Here, we use the depth-averaged velocity defined as 

 
1

1 1
1

1u
h

dz
h

eh

eh -
º ÑF

+ ò
 (28) 

And the drag coefficient ja  is defined again in terms of the depth-averaged horizontal velocity as  

 
2

2

1 1 1 uj l t

j
dd

l n la a a
l l

æ ö- -æ ö= +ç ÷ç ÷ç ÷è øè ø  (29) 

After substituting Eq. (26) into Eq. (28), the velocity at the bottom can be expressed in terms of the 
depth-averaged velocity as 
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1,0 1
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2 1

41 1 1
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=

é ù
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Substitution of Eq. (30) into the momentum equation (27) gives 
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The continuity equation is obtained by substituting Eq. (26) into the kinematic free-surface boundary 
condition (18) as 

 
( )1 1 0uh

t
h eh¶

+Ñ × + =é ùë û¶  (32) 
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Eqs. (47) and (48) are the set of Boussinesq equations for waves inside one permeable layer in non-
dimensional form. In physical variables, the equations are 

 
( ) ( )

1 1 1 1 1 1

2
1

1 1 1 1 1 1
1 0
2 3

u u u

u u

g
t

h h h
t

b a h b

b a

¶æ ö+ + Ñ + ×Ñç ÷¶è ø
ì ü¶æ ö+ + Ñ Ñ × - Ñ Ñ × =é ùí ýç ÷ ë û¶è øî þ  (33) 

 
( )1 1 0uh

t
h h¶

+Ñ × + =é ùë û¶  (34) 

If the domain is not in porous media but in clean water ( 1 1l = ), then 1 1b =  and 1 0a = , and thus the 
momentum equation (33) becomes 

 
2

1 1 1 1
1 1 1 1

1 0
2 3

u u uu u hg h h
t t t

h
ì ü¶ ¶ é ¶ ùæ ö æ öï ï+ Ñ + ×Ñ + Ñ Ñ× - Ñ Ñ × =í ýê úç ÷ ç ÷¶ ¶ ¶è ø è øï ïë ûî þ  (35) 

Eqs. (34) and (35) are the Boussinesq equations of Peregrine (1967) for waves on impermeable beds. 

Development of extended Boussinesq equations for deeper waters 
The developed Boussinesq equations can be applied in relatively shallow water, but cannot be 

applied in deeper waters. Since 1990s, several researchers have extended the Boussinesq equations 
which are applied to deeper waters for waves on impermeable beds (Madsen and Sorensen, 1992; 
Nwogu, 1993, Wei et al. 1995). For waves on permeable beds, Cruz et al. (1997) and Hsiao et al. (2002) 
followed the approaches of Madsen and Sorensen (1992), and Nwogu (1993), respectively, to extend 
their model for deeper waters. Here, Cruz et al.’s (1997) approach is employed to extend the model for 
deeper waters. Thus, the momentum equation (35) becomes 

 

( )

( ) ( )

21
6

1 0
2

u u u u

u

g h
t t

h h gh h
t

b a h b b a

g b a g h

¶ ¶æ ö æ ö+ + Ñ + ×Ñ + + Ñ Ñ×ç ÷ ç ÷¶ ¶è ø è ø
¶æ öæ ö- + + Ñ Ñ × - Ñ Ñ × Ñ =é ù é ùç ÷ç ÷ ë û ë û¶è øè ø  (36) 

where 1/15g =  is a correction factor to improve the dispersion relation. Eqs. (34) and (36) are the 
extended Boussinesq equations for waves inside a permeable layer. 

 

INTERNAL GENERATION OF WAVES IN POROUS MEDIA 

Geometric optic approach 
 Neglecting nonlinear terms and considering waves propagating in one-dimensional domain over 

constant water depth, the extended Boussinesq equations for waves in a porous layer are simplified 
from Eqs. (34) and (36) as 

 
0uh

t x
h¶ ¶

+ =
¶ ¶  (37) 

 2 3
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3

uu g h gh
t x t x x
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Differentiating Eq. (38) in space and using Eq. (37) yields 
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The water surface elevation can be expressed as 

 
( )( )

0
ri k x ti kx ta e ae wwh --= =

 

(40) 

where 0
ik xa a e-= , ( )r ik k i k= +  is the complex wave number, rk  is the real part related to wave 

phase, and ik  is the imaginary part related to the decay of wave amplitude. Substituting Eq. (40) into 
Eq. (39) give, in real part, the phase velocity given by 
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The imaginary part gives information of the energy velocity given by 
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ú

ê úû
é ùæ ö æ ö æ ö
ê ú- - + +ç ÷ ç ÷ ç ÷
ê úè ø è ø è øë û  (42) 

For waves propagating in clean water media (i.e., 1, 0b a= = ), Eq. (42) reduces to the energy velocity 
of the extended Boussinesq equations of Madsen and Sorensen (1992) derived by Kim et al. (2007). 

The relation between non-dimensional wavenumber and characteristic of porous media is specified 
as 
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ê ú+ +ç ÷ ç ÷
ê úè ø è øë û  (43) 

Derivation of source function 
A mass source function MS  is added to the continuity equation (37). Differentiating the 

momentum equation (38) in space and using Eq. (37) with the mass source function MS  yields 
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2 3 4
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2 2 4
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1
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g h gh
t h t tx x t x

SS h
t h t x
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The time-harmonic term can be separated as 

 ( ), ( ) exp( )x t x i th h w= -%
      (45) 

 ( ), ( ) exp( )M MS x t S x i tw= -%
      (46) 

Substituting the time-harmonic terms given by Eqs. (45) and (46) into Eq. (44)  yields a fourth-order 
ordinary differential equation 
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Following Wei et al. (1999) we apply Green’s function approach to Eq. (47) to get the surface elevation 
as 

% ( )11 1( ) exp 1
2

i
r s

r r

kIx k i x x
k gh f k
wh

é ùæ ö
= + -ê úç ÷

ê úè øë û  (52) 

where f  is a function of dimensionless terms (i.e., , / ,...r i rk h k k  ), defined as 
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The target surface elevation is given by 
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r s

r

k
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k
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= + -ê úç ÷
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By comparing Eq. (52) with the target surface elevation in Eq. (55) we can get the source function as 

 

( )2
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1
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2

sI r
M
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b
h

w
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NUMERICAL VERIFICATION 
This section verifies our developed model by simulating wave propagation in different porous 

media and comparing numerical results with the exact solution and physical experiments. 

Numerical scheme 
A finite-difference model is introduced to solve the extended Boussinesq equations for waves 

propagating in a porous layer. A 4th-order Adams-Basthforth-Moulton predictor and corrector scheme 
is employed to discretize the model equations in time. The first-order spatial derivative terms are 
differenced to ( )4xO D utilizing a five-point formula.  Spatial and temporal differencing of the higher-
order dispersion terms is done to the second-order accuracy. We apply numerical scheme the same as 
FUNWAVE 1.0 (Kirby et al., 1998) model with predictor and corrector steps. The predictor step is the 
third-order explicit Adams-Bashforth scheme and the corrector step applies the fourth-order implicit 
Adams-Moulton. The corrector step is iterated until the error between two successive results smaller 
than a required limit (i.e., 510-  ). 

Sponge layers are placed at the outside boundaries of the computation domain in order to dissipate 
wave energy inside the sponge layers. Thus, the momentum equation (36) is modified as 

 

( )

( ) ( )

21
6

1 0
2

u u u u

u us

g h
t t

h h gh h D
t

b a h b b a

g b a g h w

¶ ¶æ ö æ ö+ + Ñ + ×Ñ + + Ñ Ñ×ç ÷ ç ÷¶ ¶è ø è ø
¶æ öæ ö- + + Ñ Ñ × - Ñ Ñ × Ñ + =é ù é ùç ÷ç ÷ ë û ë û¶è øè ø  (57) 

where sD  is the damping coefficient inside the sponge layer given by 

 

( )2.5

0, outside sponge layer

exp 1
, inside sponge layer

exp(1) 1
sD d Sp

w

ì
ïï é ù= -í ë ûï

-ïî

 (58)

 
where Sp  is the sponge layer thickness as 04Sp L=  ( 0L  is the wavelength without damping) and d  is 
the distance from the starting point of the sponge layer. In order to generate wave smoothly, a 
hyperbolic tangent function ( )tanh / 5n t TD , where n  is the time stage, tD  is the time step and T  is 
wave period, is multiplied to the source function. 

Sinusoidal waves propagation inside porous media 
Waves are simulated to propagate in shallow ( 0.09kh p= ) and deep ( 1.2kh p= ) waters in 

horizontal 1-dimensional domain. The source function width is one wavelength, and the width of the 
sponge layer is 4 wavelengths. The grid size is chosen as 0 / 50x LD = , and the time step is chosen to 
guarantee stable solution with Courant number 0.1rC = . 

 We use the values of drag resistance from Ergun’s (1952) as 150la = , 1.75ta = , 0.4k = . In 
this section we generate waves in different porous media by changing the porosity l  and the porous 
material diameter d . The water depth is kept constant 2h m= .  

Fig. 3 compares numerical and analytical solutions of normalized wave amplitudes. The analytical 
solution is determined as ( )exp ik x- . A good agreement is observed from this comparison. Besides 
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that, by comparing waves propagate in shallow porous media (Figs. 3Figure  (a1), (a2), (a3)) with 
deep porous media (Figs. 3 (b1), (b2), (b3)), it can be seen that with the same porosity characteristics, 
the wave amplitude in shallow water is dissipated more than the wave amplitude in deep area. At the 
same water depth, if the porosity is constant the energy dissipation increases while the porous material 
diameter decreases (i.e., by comparing Figs. 3 (a1) and (a2), and Figs. 3 (b1) and (b2)), if the porous 
material diameter is constant the energy dissipation increases while the porosity decreases (i.e., by 
comparing Figs. 3 (a3) and (a2), and Figs. 3 (b3) and (b2)). 

 
 (a1) 0.5, 4d cml = =   (b1) 0.5, 4d cml = =  

  
 (a2) 0.5, 2d cml = =   (b2) 0.5, 2d cml = =  

 
 (a3) 0.8, 2d cml = =   (b3) 0.8, 2d cml = =  

 
Figure 3. Comparison of normalized wave amplitudes. Line definition: filled-circle = numerical amplitude, 
solid line = surface elevation; dashed-line = exact solution, vertical bold line = starting point of sponge layer, 
shaded rectangle = source region. (a1) – (a3): 0.09kh p= , (b1) – (b3): 1.2kh p= . 

 

Generation of Cnoidal waves in porous media 
In the previous section source function method was developed for linear waves propagating inside 

porous media. In this section we generate nonlinear cnoidal waves for horizontally one-dimensional 
porous media. The surface elevation of incident cnoidal waves is given by 

 2 2I
t

tHcn K m
T

h h æ ö= + ç ÷
è ø  (59) 

where th  is the elevation of wave trough, 
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 1t
H Em
m K

h æ ö= - -ç ÷
è ø   (60) 

where H  is the incident wave height, cn  is the Jacobian elliptic function, K  is the complete elliptic 
integral of the first kind, E  is the complete elliptic integral of the second kind, and m  is the modulus 
which determines the wave shape. 

In the numerical simulation, the water depth is chosen as 10m , and the wave period is 20 s  which 
cause relative shallow water depth with 0.1kh p= . At each time step the surface elevation of cnoidal 
wave is added to the model. The added surface elevation of cnoidal wave is given by Cho (2003). 

 

 
Figure 4. Comparison of numerical solution of Cnoidal waves with exact solution. Line def.: same as Fig. 3. 

 
The characteristics of the porous media are 150la = , 0.4k = , 0.8l = , and 0.2d = . We do not 

use turbulent resistance term ( 0ta = ) because this term dissipates wave energy to almost zero after 
very short distance, i.e., 0.5 wavelength. 

We do not have available exact solution for Cnoidal waves propagating inside porous media so we 
use quasi-exact solution as 
 

( )expI
q ik xh h= -  (61) 

Fig. 4 compares numerical and quasi-exact solution. Though numerical solution appears a little bit 
underestimate, it shows good trend of energy dissipation over computation domain. 

Interaction of solitary waves with porous breakwater 
Solitary wave can keep its stable form while travelling for a long distance or even when it 

propagates inside porous media or interact with porous breakwater. In this part we simulate solitary 
waves interacting with porous breakwater. 

Initial and boundary conditions 

The solitary wave profile and the corresponding velocity are given by Wang (1993) as 

 
( ) ( )2 4

0 0sech sech
1

a aK x Ct x K x Ct x
a h
h

h é ù= - - + - -ê úë û+
  (62) 

 
( )2

0
4 sech
3

u Kh ga K x Ct x= - -
  (63) 

where 0x  is the initial location of solitary, and 

 

1 3
4 1

a
hK

ah
h

=
æ ö+ç ÷
è ø   (64) 
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 ( )C g h a= +
  (65) 

 
Liu and Wen (1997) and other authors used 

two types of governing equations to generate 
waves propagating through a porous breakwater. 
One is to generate waves outside the porous 
breakwater and the other for waves inside the 
porous breakwater. That’s why along the 
interface between the open-water and the porous 
breakwater they need to apply matching 
conditions for both free surface displacement and 
velocity. The free surface and velocity as well as 
their spatial derivatives are continuous across the 
interfaces. However, in our study, in order to 
simulate waves propagating through a permeable breakwater we use only one type of the derived 
governing equations for waves propagating inside and outside porous media by adjusting the media 
porosity. That is, outside the breakwater (clean water area) we equate the porosity as unity and inside 
the breakwater (porous media) we equate the porosity less than unity, as can be seen in Fig. 5. So we 
do not need any matching conditions at the interface between the open-water and the porous 
breakwater. 

Determination of drag coefficient inside porous breakwater 

In order to determine the drag resistance term in Eq. (7) we need to specify the velocity inside 
porous media. Since the horizontal length scale of the solitary wave is much longer than the porous 
breakwater width, Madsen (1974) assumed the horizontal velocity as constant inside the porous 
breakwater. For representative velocity they used the averaged discharge velocity ( u ) inside the porous 
breakwater which is given by 

 
( )0

1
2 bu u u= +

 (66) 

where 0u  and bu  are the velocities at the up-wave and down-wave ends of the breakwater, 
respectively. 

Based on the assumption of linear variation of the velocities inside the breakwater, Liu and Wen 
(1997) and Lynett et al. (2000) used the characteristic velocity ( cU ) given by 

 
4 4

0
3 3

0

3
4

b
c

b

u u
U

u u
-

=
-  (67) 

This assumption is correct if the width of the breakwater is very thin as shown in Fig. 6(a). However, if 
the width increases, the velocity distribution inside porous breakwater becomes nonlinear as shown in 
Fig. 6(b). 

By applying one type of the governing equations to the whole domain our present model can 
determine exactly the velocity at each point inside porous breakwater at each time step as shown in Fig. 
7. Applying this advantage, the drag coefficient which is determined in eq. (7) is not constant inside the 
porous breakwater but depends on varying velocity inside the breakwater. 

Interacting of solitary waves to a porous breakwater 

Fig. 7 gives us some information for the propagation of solitary waves through a rectangular 
porous breakwater at several time steps. The incident solitary wave partially passes through and reflects 
back from the breakwater. The porosity characteristics of the porous breakwater are specified as 

0.44l = , 1092la = , 0.81ta = , 2.34d cm= , the width of the breakwater 20b cm= . The nonlinearity 
parameter is / 0.1a h = . Our model shows good agreement with Liu and Wen (1997) for the reflected 

Figure 5. Boundary condition at porous breakwater 
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waves while the transmitted wave amplitude is a little lower than the value of Liu and Wen (1997). The 
shapes of the transmitted and reflected waves are similar to the solitary wave. The x-coordinate is 

scaled by 3 /h a , h  by a  and t  by /h ga . Fig. 7(f) shows a small wave tail from the reflected 
waves because of the frequency dispersion. 

 
 a) breakwater width is 20 cm  b) breakwater width is 40 cm 

 
Figure 6. Velocity distribution inside breakwater at different time steps 

 

 

 

 
Figure 7.  Propagation of solitary wave through a porous breakwater 

 
We verify our numerical transmission and reflection coefficients of solitary waves with the data 

from Lynett et al. (2000) as shown in Fig. 8. They used the governing equations of Liu and Wen (1997) 
for waves propagating inside the porous media. They used the solitary initial condition of Wang (1993) 
and they did their own physical experiment in a wave tank of 30 m length. Solitary waves with 
amplitude of 1 3.5:  cm were generated in constant water of 10 cm which results the nonlinearity

/ 0.1 0.35a h = : , and the surface elevations were measured 1 m in front of and 1 m behind the porous 
breakwater. Breakwater widths are 15 cm and 30 cm. We use their best fit laminar and turbulent drag 
coefficients as 1100, 0.81a b= = , respectively for our numerical simulation. 

For all 4 cases, the transmission of the present model shows good agreement with Lynett et al. 
(2000). However, with small nonlinearity (i.e. 0.2e < ) the present model underestimates the reflection 
coefficient while Lynett et al. (2000) overestimates with high nonlinearity (i.e. 0.2e > ). 
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Figure 8.  Reflection and transmission of solitary waves by porous breakwater. (a) d=1.6 cm, b=15 cm; (b) 
d=1.6 cm, b=30 cm; (c) d=2 cm, b=15 cm; (d) d=2 cm, b=30 cm. Line definition: dashed-line = Lynett et al.’s 
(2000) model; symbols = Lynett et al.’s (2000) experimental data; solid line = present model 

 

CONCLUSIONS 
In this research, a new set of the extended Boussinesq equations has been derived to describe wave 

propagation in porous media. The momentum equation includes drag and inertial resistances. This 
model can simulate water waves propagating inside and outside porous media simultaneously. 

Using internal generation of wave technique, the developed model simulated waves in deep and 
shallow waters and shown good results when comparing with the analytical solution. Using this model, 
we generated Cnoidal waves in porous media and compared with the assumed analytical solution and 
showed good agreement. Further, the model was verified by simulating nonlinear solitary waves. When 
interacting with permeable breakwater, the solitary waves propagated through permeable breakwater 
and reflected back from the breakwater. The transmission and reflection coefficients are compared to 
the available experimental data. 

The model is also applied to horizontal two-dimensional domain for linear and nonlinear waves. 
The numerical results show good agreement with analytical solution and experimental data. 
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