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ESTIMATION OF FREAK WAVE OCCURRENCE FROM DEEP                                           
TO SHALLOW WATER REGIONS 

Hiroaki Kashima1, Katsuya Hirayama1 and Nobuhito Mori2 

Nonlinear four-wave interactions amplify wave heights of deep-water generating extreme wave such as a freak wave. 
However, it is not clear the behavior of generated freak waves in deep-water shoaling to shallow water regions. In this 
study, a series of physical experiments and numerical simulations with several bathymetry configurations were 
conducted for unidirectional random waves from deep to shallow water regions. The maximum wave heights increase 
with an increase in kurtosis by third-order nonlinear interactions in deep water regions. The dependence of the 
kurtosis on the freak wave occurrence is weakened due to second-order nonlinear interactions associated with wave 
shoaling on the slope. Moreover, it is possible to understand the behavior of the high-order nonlinearity and the freak 
wave occurrence in shallow water regions if appropriate correction of the insufficient nonlinearity of more than O(ε2) 
to the standard Boussinesq equation are considered analytically. 
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INTRODUCTION 
 In the past two decades, the deep-water extreme wave such as a freak wave was measured and 
caused several severe damages to offshore structures and vessels. An accurate estimation of maximum 
wave height and the prediction of the freak wave occurrence is important for marine safety and ocean 
development. According to several studies on freak waves in offshore, the kurtosis of the surface 
elevation which is indicator of the third-order nonlinear interactions (quasi-resonant four-wave 
interactions) can be related with a significant enhancement of freak wave occurrence (Yasuda and 
Mori, 1993). Janssen (2003) theoretically investigated the freak wave occurrence caused by a 
consequence of quasi-resonant four-wave interactions in short time. He also found that the quasi-
resonant nonlinear transfer is associated with the increase of fourth-order cumulant which is equivalent 
to kurtosis. In addition, he introduced Benjamin-Feir Index (BFI) to investigate the ratio of 
nonlinearity to frequency dispersion for the narrow-banded unidirectional waves, given by 

       
Δ

=
ε2BFI       (1) 

Where ε is the wave steepness and Δ is the bandwidth of frequency spectrum. Furthermore, Mori and 
Janssen (2006) formulated the probability density function of the maximum wave height pm by Eq. 2 
and the exceedance probability of maximum wave height Pm by Eq. 3 from spectral shape through the 
BFI as an extension work of Janssen (2003), analytically. 
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Where 

       ( )2
40 3

BFIπκ =      (4) 
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where N is the number of waves for one wave train and κ40 is the fourth-order cumulant of the surface 
elevation which equals to kurtosis minus three. This frame work on the estimation of freak wave, 
named as MJ2006 in here, was verified by the several wave flume experiments for unidirectional 
waves including the spatial evolution of the kurtosis, the wave height distribution and the maximum 
wave height distribution in detail (e.g. Mori et al., 2007; Petrova and Guedes Soares, 2009). Moreover, 
the recent investigation reported that directional dispersion reduces the enhancement of extreme wave 
generation due to the third order nonlinear interactions (Waseda et al., 2009). Mori et al. (2008, 2011) 
reported a new formula for the kurtosis as an extension of Eqs. 1 and 4 including the directional 
dispersion effects. Although the characteristics of freak wave occurrence and its prediction in deep 
water regions become getting clear, there are a few studies about the characteristics of freak wave 
propagating from deep to shallow water regions (e.g. Janssen and Onorato, 2007; Zeng and Trulsen, 
2012; Trulsen et al., 2012). The most of previous studies assumed a flat bottom and quasi stationary 
conditions for given water depth. However, a wave transition sometimes occurs quickly from deep to 
shallow water regions on a steep slope. It is interesting to examine the behavior of wave group 
enhanced in the deep-water propagating to shallow water regions. 
 In General, a numerical simulation using the standard Boussinesq equation has been frequently 
and widely used to estimate wave transformation in shallow water regions (Hirayama, 2002). The 
standard Boussinesq equation shows high-level performance in the design of coast and harbor 
structures in Japan (e.g. Hirayama, 2013a). However, it is difficult to describe the freak wave 
occurrence from deep to shallow water region by the standard Boussinesq equation because it can 
express only up to the second-order nonlinear interactions only in shallow water regions. Thus, there is 
a gap of governing equation between deep and shallow water region from the extreme wave modeling 
point of view. It is necessary to investigate the transient behaviors of the high-order nonlinearities 
related to the freak wave occurrence from deep to shallow water regions. 
 In this study, the physical experiments in a wave tank and numerical simulations using the 
standard Boussinesq equation were conducted to estimate the freak wave occurrence from deep to 
shallow water regions. First, the experimental characteristics of the freak wave occurrence from deep 
to shallow water regions are investigated through the transient behaviors of the high-order 
nonlinearities in shallow water regions. Second, the nonlinear statistical wave properties related to 
freak wave occurrences by the standard Boussinesq equation are investigated through the comparison 
with the experimental data. Finally, the parameterization of nonlinear effects is proposed to be able to 
estimate the probability density function of maximum wave height as freak wave occurrences in 
shallow water regions using the simulated results. 
 

OUTLINES OF PHYSICAL EXPERIMENTS AND NUMERICAL SIMULATIONS 

Experimental Setup 
 A series of the physical experiments were conducted using a two-dimensional wave tank (0.6 m 
wide, 1.5 m high and 35.0 m long) at Port and Airport Research Institute in Japan. The four different 
bathymetries were selected to investigate the freak wave occurrence from deep to shallow water 
regions as shown in Fig. 1. The Type 1 is flat bathymetries, of which constant water depth is equal to 
0.8 m. The characteristics of the freak wave occurrence without bottom effects in the water regions are 
investigated by the bathymetry Type 1. The Type 2 has a fixed impermeable 1/20 slope installed at the 
toe 1.56 m from the wave maker. The relationship between second-order and third-order nonlinear 
interactions and freak wave occurrence from deep to shallow water regions will be discussed in the 
measurements using the bathymetry Type 2. The Types 3 and 4 are the complex bathymetries 
composed of a combination of Type 1 and Type 2. The Type 3 has a fixed impermeable 1/30 slope 
installed with the toe 11.9 m from the wave maker and a flat ground bathymetry, of which constant 
water depth is equal to 0.2 m. In the Type 4, the two different slopes are installed at the toe 11.9 m 
from the wave maker and the water depth at the inflection point of them is equal to 0.2 m. 
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 The six different JONSWAP-type spectra with different values of the wave steepness, Hi/Lp of 
0.02, 0.03 and 0.04 and the spectral peek enhancement factor, γi of 1.0, 3.3 and 10.0 were performed. 
Here Hi is the characteristic incident wave height and Lp is the wave length for the deep water wave 
with the peak frequency fp = 1.0 Hz, which gives the spectral peak wave number kp = 4.03 m-1. The 
experimental conditions are summarized in Table 1. 
 The water surface elevation was measured by 15 to 22 capacitance-type wave gauges for each 
bathymetry type. An overview of the wave tank with the location of the wave gauges is shown in Fig. 
1. As mentioned in the previous section, the maximum wave height depends on the number of waves in 
the wave train as shown in Eqs. 2 and 3. Hence the long time experiments are important to verify the 
effects of the number of waves for understanding the maximum wave height distribution, correctly. 
Therefore ten measurement sets with the different random phases for each incident wave were 
performed in the physical experiments. To check the sensitivity of the maximum wave height 

 
(a) Type 1 

 
(b) Type 2 

 
(c) Type 3 

 
(d) Type 4 

Figure 1. Cross sectional view of four different bathymetry configurations (“w” indicates location of wave 
gauge) 
 
 
Table 1. Experimental conditions (Hi: incident wave height, hi: water depth in front of wave maker, kp: wave 
number for deep water wave with fp = 1.0 Hz, Lp: wave length for deep water wave with fp = 1.0 Hz, γi: peak 
enhancement factor of JONSWAP-type spectrum) 
 

Case Hi 
(cm) 

hi 
(m) kphi Hi/Lp γi Bathymetry section 

1 6.24 0.8 3.235 0.04 1.0 Type 1 and Type 2 
2 6.24 0.8 3.235 0.04 3.3 Type 1 and Type 2 
3 6.24 0.8 3.235 0.04 10.0 Type 1 and Type 2 
4 3.12 0.8 3.235 0.02 10.0 Type 1 and Type 2 
5 4.68 0.8 3.235 0.03 10.0 Type 1 and Type 2 
6 6.24 0.5 2.022 0.04 10.0 Type 3 and Type 4 
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distribution on the number of waves, the duration of each measurement was 20 minutes which 
corresponds to about 1,000 waves. The total number of the recorded wave height was about 10,000 
waves for each case. In our analysis, the number of waves for one wave train is defined as N = 200. 
The skewness μ3 and kurtosis μ4 which indicate the wave nonlinearity are defined as: 
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where ηi is the water surface elevation, ηmn is the time mean value of ηi, ηrms is the root mean square 
value of ηi, and n is the number of data points. From Eqs. 7 and 8, the linear random wave corresponds 
μ3 = 0.0 and μ4 = 3.0. 

Numerical Setup 
 A series of the numerical simulation, named NOWT-PARI (Nonlinear Wave Transformation 
model by Port and Airport Research Institute) originally developed by Hirayama (2002), were 
performed to estimate the freak wave occurrence in shallow water regions. These simulations are based 
on the standard Boussinesq equation with improved the dispersion characteristics as reported by 
Madsen and Sørensen (1992). The fundamental equations of continuity and momentum for x and y 
directions can be expressed as follows: 
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where η is the instantaneous water surface elevation. P and Q are the depth-integrated velocity 
components (flux per unit width) in x and y directions, respectively. h is the water depth and D is the 
total water depth which equals to the water depth plus the instantaneous water surface elevation. g is 
the gravitational acceleration. ε and μ are the small parameters normalized by wave number k, which 
indicate the nonlinear effects (H/h) and dispersion effects (kh), respectively, where H is the wave 
height. The governing equations take into account up to O(ε) for nonlinearity and O(μ2) for dispersion. 
The parameter B is the dispersion enhancement coefficient. For B = 1/15, the weak-nonlinear wave 
shoaling and wave dispersion closely correspond to the linear wave theory (Madsen and Sørensen, 
1992). The further improvements of NOWT-PARI (e.g. wave breaking, run up and wave overtopping 
models) have been conducted to accurately estimate the wave transformation for engineering 
application in coastal and harbor zones (e.g. Hirayama, 2013b). 
 The governing equations is discretized by the ADI (Alternating Direction Implicit) method with 
the staggered grid, and the second-order central difference method and the Euler explicit method are 
applied to the spatial and temporal derivative terms, respectively. In the numerical simulations, we will 
consider the only most particular case (i.e., the strongest nonlinear case), which corresponds to a 
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JONSWAP-type spectrum with γi = 10.0 and wave steepness, Hi/Lp of 0.04 for the bathymetry Type 3 
and Type 4. The numerical domains for two bathymetry types were setup as shown in Fig. 2. The wave 
signal was generated at the leftward boundary and propagated in the right side direction in the 
numerical domains, and the water depth in front of the wave maker hi was 0.5 m. The sponge layer 
1.0*Lp long was installed at the leftward boundary corresponding to the wave maker and the permeable 
layer 5.5 m long was installed at the rightward boundary corresponding to the wave absorber. The 
computational spatial and temporal resolutions were setup dx = 0.05 m and dt = 0.001 s to get high 
accuracy results of the numerical simulations, respectively. 
 

RESULTS AND DISCUSSION 

Characteristics of freak wave occurrence in deep water regions 
 The characteristics of the freak wave occurrence in deep water regions were investigated through 
the comparison with MJ2006. Fig. 3 shows the spatial developments of both skewness and kurtosis of 
the surface elevation for the experimental data in deep water regions. The horizontal axis is the 
dimensionless distance from the wave maker x/Lp and the vertical axes are the skewness and kurtosis 
which are given as the average values of 50 wave trains, respectively. The marks are the experimental 
data for Case 1 to 5, respectively. As can be noticed, the distributions of both skewness and kurtosis 
deviate from Rayleigh distribution for which the values of the skewness and kurtosis are equal to 0.0 
and 3.0. The skewness of the experimental data is relatively constant with the values according to the 
incident wave steepness without relying on the distance from the wave maker. For the cases of Hi/Lp = 
0.02, 0.03 and 0.04, the spatial averaged values of the skewness are 0.06, 0.11 and 0.18, respectively. 
The skewness is analytically represented by the second-order nonlinear interactions of Longuet-
Higgins (1963) and is simply given for deep-water random waves as 
 

      0
)2(

3 3 mk p=μ       (12) 

where m0 indicates the characteristic wave height from the wave energy. Thus the skewness depends 
on the wave steepness for the second-order nonlinearity. The theoretical values of the skewness μ3

(2) 
are 0.09, 0.12 and 0.16 for each wave steepness Hi/Lp = 0.02, 0.03 and 0.04, respectively. Therefore 
the experimental results show a good agreement with the development of the skewness by the second-
order nonlinear interactions. On the other hand, the kurtosis for the Case 3 is monotonically increased 
up to 3.4 as the wave propagates. The kurtosis is represented by the second-order nonlinear 
interactions (Longuet-Higgins, 1963; Mori and Janssen, 2006) and is given by 

 
(a) Type 3 

 
(b) Type 4 

Figure 2. Numerical setup 
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The kurtosis given by the second-order nonlinear interactions μ4
(2) are 3.02 to 3.04 for any wave 

conditions. Thus the kurtosis increase is independent of the second-order nonlinear interactions in deep 
water regions. These results imply that the kurtosis may be increased by the third-order nonlinear 
interactions under the effects of the quasi-resonant four-wave interactions in deep water regions as 
discussed by Mori and Yasuda (2001). 
 To evaluate the effects of the nonlinearity related to the freak wave occurrence on the maximum 
wave height in deep water regions, Fig. 4 shows the relationships between the expected value of 
maximum wave height <Hmax/H1/3>, and skewness and kurtosis for the deep water waves. The bracket 
<> indicates the ensemble-averaged value and the solid line indicates MJ2006. In Fig. 4, the 
experimental data show a clear dependence of the kurtosis on <Hmax/H1/3>, although <Hmax/H1/3> is 
independent of the skewness because the kurtosis directly effects on the appearance of the maximum 
wave height as third-order nonlinear correction of the wave height. The experimental data are in good 
agreements with the results of MJ2006. 

Characteristics of freak wave occurrence from deep to shallow water regions 
 In the previous section, we have investigated the freak wave occurrence in deep water regions. 
However, its characteristics in shallow water regions differ from that of in deep water regions because 
of the bottom bathymetry effects. In this section, it is examined the effects of water depth on freak 
wave occurrence. The wave propagation process from offshore to near shore on a fixed impermeable 
constant slope was setup for the bathymetry Type 2. Here we will consider the strongest nonlinear case, 
which corresponds to a JONSWAP-type spectrum with γi = 10.0, the significant wave height of 6.24 
cm and the wave steepness of 0.04, initially. 
 Fig. 5 shows the effects of the water depth on the spatial developments of skewness and kurtosis 

   
(a) skewness                                                                 (b) kurtosis 

Figure 3. Spatial developments of skewness and kurtosis in deep water regions 

 
 

   
(a) skewness                                                                 (b) kurtosis 

Figure 4. Dependence of <Hmax/H1/3> on skewness and kurtosis in deep water regions 
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for the strongest nonlinear case. The filled and opened marks are the experimental data of kph < 1.363 
and kph > 1.363, respectively and the threshold value of kph = 1.363 corresponds to the critical 
condition for Benjamin-Feir instability. The yellow filled marks are the data in the surf zone. In the 
wave propagation process from offshore to near shore, both skewness and kurtosis have an interesting 
behavior at kph = 1.363 which corresponds to x/Lp = 6.90. In the deep water regions of kph > 1.363, the 
skewness is nearly-constant, μ3 = 0.18, without relying on the distance from the wave maker and the 
kurtosis is increased as the waves propagate. These results are similar to the development process in 
deep water regions of kph = 3.235 as shown in Fig. 3. However, when kph becomes smaller than 1.363, 
both skewness and kurtosis are increased rapidly. In particular, the value of skewness is increased up to 
1.0 on the slope, remarkability. The skewness change on the slope of kph < 1.363 is caused by the 
second-order nonlinear interactions associated with wave shoaling as follows. 
 In order to check the behavior of the nonlinearity from deep to shallow water regions, Fig. 6 
shows the relationship between skewness and kurtosis for Type 1 and Type 2. The horizontal and 
vertical axes are skewness and kurtosis, respectively. The solid line is the second-order nonlinear 

 
Figure 5. Effects of water depth on spatial developments of skewness and kurtosis (Incident wave 
condition; γi = 10, Hi = 6.24 cm, Hi/Lp = 0.04) 
 
 

 
Figure 6. Relationship between skewness and kurtosis from deep to shallow water regions (Incident wave 
condition; γi = 10, Hi = 6.24 cm, Hi/Lp = 0.04) 
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theory in consideration of the water depth change by Mori and Kobayashi (1998) and the dashed line is 
the empirical equation introduced by the data observed in the beach with 1.4 to 24.4 m water depth 
(Ochi and Wang, 1984). The theoretical and empirical equations mean that the skewness developed by 
the second-order nonlinear interactions associated with wave shoaling effects on the kurtosis change 
when the behaviors of the skewness and kurtosis obey these second-order relations. For the data of kph 
> 1.363, the kurtosis is independent of the skewness and is widely distributed between 2.9 and 3.6. 
However, the kurtosis is basically dependent on the skewness change and is increased with increase of 
the skewness for the data of kph < 1.363. The behaviors of the kurtosis and skewness of kph < 1.363 are 
similar to the two relational expressions by Mori and Kobayashi (1998) and Ochi and Wang (1984). 
Yuen and Lake (1982) and Janssen and Onorato (2007) reported that the energy transfer and 
modulation of quasi-monochromatic waves by third-order nonlinear interactions is diminished when 
kph becomes smaller than 1.363. These results follow the discussion by Yuen and Lake (1982) and 
show that the threshold value of kph = 1.363 plays a significant role for understanding the freak wave 
occurrence in shallow water regions. Thus the above discussion can be summarized as follows. The 
kurtosis on the slope is increased by two different mechanisms. First, the kurtosis is increased by the 
third-order nonlinear interactions under the effects of quasi-resonant four-wave interactions until 
intermediate water depth of kph = 1.363, although the effects becomes weaker from offshore to near 
shore. After passing kph = 1.363, the shallow water effects which correspond to the second-order 
nonlinearities become dominant and the kurtosis is increased with the increase of the skewness given 
by Eqs. 12 and 13. Moreover, the development of the third-order nonlinear interactions in deep water 
regions of kph > 1.363 remains even in shallow water regions of kph < 1.363. This aftereffect makes the 
difference of the frequency distribution of the maximum wave height in shallow water regions. Finally, 
the kurtosis is rapidly decreased by wave breaking in the surf zone. 
 As mentioned above, the relationships between the nonlinear interactions and the shallow water 
were discussed. Here we will discuss the characteristics of the freak wave occurrence in the shallow 
water regions in terms of kph. To investigate the relationships between the skewness and kurtosis under 
the water depth change, Fig. 7 shows the dependence of the kurtosis on skewness in the shallow water 
regions on a slope (Type 2). The notification is same to Fig. 6 and the marks are the experimental data 
for Case 1 to 5, respectively. As already discussed above, the kurtosis of kph < 1.363 are basically 
dependent on the skewness change and they roughly obey the relations by Mori and Kobayashi (1998) 
and Ochi and Wang (1984) regardless of the incident wave conditions. For the data of kph > 1.363, 
although the value of the skewness after the waves generate is different according to the incident wave 
steepness (see Fig. 7 (a)), the kurtosis is distributed for the skewness independently. 
 We show the relationships between the expected value of maximum wave height <Hmax/H1/3> 
and skewness and kurtosis from deep to shallow water regions in Fig. 8 and Fig. 9. The notifications 
are same to Fig. 4 and the marks are the experimental data for Case 1 to 5, respectively. The yellow 
filled marks are the data in the surf zone. The experimental data of kph > 1.363 show there is a clear 
correlation between <Hmax/H1/3> and kurtosis although there is no systematic relation between 
<Hmax/H1/3> and skewness. The MJ2006 follows the experimental data approximately. On the other 
hand, <Hmax/H1/3> in the range of kph < 1.363 becomes nearly flat between 1.6 and 1.8 according to the 

   
(a) wave steepness                                       (b) special peak enhancement factor 

Figure 7. Relationship between skewness and kurtosis shoring from offshore to near shore 
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incident wave steepness, although the skewness and kurtosis are rapidly increased under the effects of 
the second-order nonlinear interactions related to the shallow water effects. The dependence of 
<Hmax/H1/3> on kurtosis becomes weakened in shallow water regions. After that, the values of 
<Hmax/H1/3> in the surf zone are rapidly decreased by the shallow water wave breaking. Concluding 
above discussion, it is possible to estimate the behavior of <Hmax/H1/3> by using the threshold value of 
kph = 1.363 in the shallow water regions. Therefore, the changes of wave height distribution can be 
expressed as a function of kurtosis from deep to shallow water regions as a proxy of the second-order 
and third-order nonlinear interactions. 

Estimation of freak wave occurrence by the standard Boussinesq equation 
 In this section, first, the basic nonlinear properties using the standard Boussinesq equation were 
investigated through the comparison with the experimental data. Second, the probability density 
function of the maximum wave height as the freak wave occurrence was estimated using the simulated 
data through the nonlinear statistical wave properties. Here we will consider the strongest nonlinear 
case which corresponds to a JONSWAP-type spectrum with γi = 10.0 and wave steepness, Hi/Lp of 
0.04 for the bathymetry Type 3 and Type 4. 
 Fig. 10 shows the spatial developments of the skewness and kurtosis for bathymetry Type 4. The 
notifications are same to Fig. 5, and the circles and squares are the experimental and simulated data, 
respectively. The vertical dashed bar indicates the line of kph = 1.363. The spatial development of the 
skewness as shown in the experimental results, which depends on the wave steepness following the 
second-order nonlinear theory given by Eq. 12 (Longuet-Higgins, 1963), cannot be seen in the 
simulated data of kph > 1.363 (x/Lp < 10.76). The nonlinear interactions given by the standard 
Boussinesq equation are expressed by the balance of the nonlinear term of O(ε) and the dispersion term 
of O(μ2). However, although the simulated skewness are slightly increased by wave shoaling under the 
effect of the slope bottom when kph becomes smaller than 1.363 (x/Lp > 10.76), they remain less than 

   
(a) wave steepness                                       (b) special peak enhancement factor 

Figure 8. Dependence of <Hmax/H1/3> on skewness in shallow water regions 
 
 

 
(a) wave steepness                                       (b) special peak enhancement factor 

Figure 9. Dependence of <Hmax/H1/3> on kurtosis in shallow water regions 
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one fifth of the experimental data. On the other hand, the simulated kurtosis of kph > 1.363 cannot 
show the spatial developments of the experimental data appropriately. The kurtosis evolutions caused 
by the quasi-resonant four-wave interactions at the order of O(ε3) as shown in the experimental results 
but such high-order nonlinear interactions of more than O(ε,μ2) are not considered in the standard 
Boussinesq equation. Even in the shallow water regions of kph < 1.363 (x/Lp > 10.76), the numerical 
simulations significantly underestimate the nonlinear properties related to the freak wave occurrence. 
Thus, these results imply that the standard Boussinesq equation may not appropriately evaluate the 
freak wave occurrence caused by the quasi-resonant four-wave interactions from deep to shallow water 
regions. Therefore, it is necessary to correct the insufficient nonlinearity of the numerical simulations 
to describe the freak wave occurrence in the shallow water regions. 
 As mentioned above, we have investigated the significant differences of the nonlinear properties 
such as the development processes of the skewness and kurtosis between the numerical simulations 
and physical experiments. Therefore, we cannot evaluate the freak wave occurrence correctly in the 
shallow water regions using the simulated data unless solving the above mentioned insufficient 
nonlinearity. The nonlinearity of more than O(ε2) which cannot be expressed in the standard 
Boussinesq equation is going to be corrected analytically. First, the corrected skewness μ3

’ was given 
by Eqs. 12 and 14 considering the difference between the data of the numerical simulations and 
experiments in the deep water regions of kph > 1.363. 
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3

'
3 μμμ +=       (14) 

where μ3
cal is the skewness given by the standard Boussinesq equation. μ3

(2) is the skewness expressed 
by the second-order nonlinear theory of Longuet-Higgins (1963). 

Next, the correction of kurtosis in the deep water regions of kph > 1.363 was conducted by using 
the spatial development process under the effects of the third-order nonlinear interactions from the 
experimental data, because there is no analysis solution for the kurtosis evolution in the deep water 
regions of kph > 1.363. The Eq. 15 was simply introduced by the spatial development of kurtosis in the 
deep water regions from the experimental data for the incident wave condition of γi  = 10.0 and Hi/Lp = 
0.04. 
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where μ4
(3) and (μ4

cal)0 are the corrected kurtosis in the deep water regions of kph > 1.363 and the 
kurtosis given immediately after wave generation, respectively. The second term of the right side of 
Eq.15 indicates the spatial development of kurtosis in the deep water regions for the experimental 
results. Following the above mentioned developments of the skewness and kurtosis given by Eqs. 14 
and 15, the corrected kurtosis in the shallow water regions of kph < 1.363, μ4

’ can be estimated by 

 
Figure 10. Spatial developments of skewness and kurtosis simulated by the standard Boussinesq 
equation for the bathymetry Type 4 
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using the relational expression between the skewness and kurtosis (i.e., Mori and Kobayashi, 1998). In 
our correction, the relational expression by Mori and Kobayashi (1998) is adopted, which is 
approximated by the Gaussian combination of the Stokes waves in the shallow water regions; 
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Fig. 11 shows the spatial developments of the skewness and kurtosis for the same condition in Fig. 10 
by the above correction method. The filled diamonds are the simulated data corrected by Eqs. 14 to 16. 
Although there is a slight difference between the simulated data with the analytical correction and 
experimental data, the simulated data with the correction seems to describe a good agreement with the 
results of the experiments. Therefore, the behaviors of both skewness and kurtosis related to the freak 
wave occurrence in the shallow water regions can be estimated by the analytical correction of the 
insufficient nonlinearity of more than O(ε2) to the standard Boussinesq equation, approximately. 
 Finally, in order to propose the estimation method of the freak wave occurrence, Fig. 12 shows the 
probability density function of the maximum wave height estimated by the analytical correction of the 
insufficient nonlinearity to the standard Boussinesq equation for the bathymetry Type 4. The 
probability density function of the maximum wave height was obtained by substituting the corrected 
kurtosis for MJ2006 as shown in Eq. 2. In MJ2006, the number of waves for one wave train was 
defined as N = 200. The solid line and the dashed line with the squares are the experimental data and 
the simulated data without the correction, respectively. The dashed line indicates the simulated data 
corrected by the insufficient nonlinearity of the standard Boussinesq equation analytically. We can see 
that the probability of the maximum wave height estimated by the above correction agrees with the 
experimental data, qualitatively, although there is a slight difference between them in terms of their 
peak values of the distributions. The further additional nonlinear correction will be required to adjust 
them, perfectly. Therefore, it is possible to understand the freak wave occurrence in the shallow water 
regions using the results of the numerical simulations using the standard Boussinesq equation, if 
appropriate higher-order nonlinear correction is considered analytically. 
 

CONCLUSION 
 In this study, a series of the physical experiments in a wave tank and numerical simulations using 
the standard Boussinesq equation installed with several bathymetries were conducted to estimate the 
freak wave occurrence from deep to shallow water regions for unidirectional random waves. First, in 
the physical experiments, the maximum wave height is increased with an increase in kurtosis by the 
third-order nonlinear interactions in deep water regions of the dimensionless water depth kph > 1.363. 

 
Figure 11. Spatial developments of skewness and kurtosis after analytical correction of the nonlinear 
properties for the bathymetry Type 4 
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The dependence of kurtosis on the freak wave occurrence is weakened under the effects of the second-
order nonlinear interactions associated with wave shoaling in the intermediate to shallow water regions 
where kph becomes smaller than 1.363. Moreover, it is possible to evaluate the freak wave occurrence 
from deep to shallow water regions by using the threshold value of kph = 1.363. Finally, although the 
standard Boussinesq equation cannot express the higher-order nonlinear interactions of more than 
O(ε2), it is possible to understand the freak wave occurrence in the shallow water regions by the 
analytical correction of the nonlinear properties (i.e., development processes of skewness and kurtosis 
from deep to shallow water regions). 
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