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Accurate prediction of sediment transport in the presence of bedforms such as sand ripples requires an advanced
understanding of how dynamic sediment beds interact with turbulent oscillatory flows. In this paper we propose a
new approach for simulating these interactions, based on a fixed grid multiphase Euler-Lagrange simulation, that fully
couples dynamic bed evolution to the motion of a sub-grid scale Lagrangian sediment phase. The sediment phase
is evolved by computing hydrodynamic and inter-particle forces and torques acting on individual particles, and is
coupled to the fluid phase through the volume-filtered Navier-Stokes equations. We validate the approach for sediment
transport applications using hindered settling velocity tests, and show very good agreement with the experimental
data of Baldock et al. (2004). We then apply the approach to simulate sediment transport and ripple bed morphology
in oscillatory flow conditions corresponding to the experimental studies of Van der Werf et al. (2007). During the
simulation, particles near ripple surface are isolated from immobile ones below allowing the computation to devote
resources only to particles that may be become mobilized. Although preliminary in nature, the simulation results
demonstrate that that the model can correctly capture the near bed velocities, suspended sediment concentrations, and
pick-up of sediment by key vortical structures.
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INTRODUCTION
In a coastal environment, sediment particles on the seabed surface will start to move once the shear

force exerted by fluid exceeds the critical values. Such motion often leads to complex fluid-particle in-
teractions and results in various bed formations, such as vortex ripples, that are frequently found on the
near-shore beach (Van Rijn et al., 1993). These bed features play an important role in affecting surface
wave propagation, sediment entrainment from the bed surface, and mixing within the wave bottom bound-
ary layer (WBBL) and higher above. Typical approaches to simulate the bedform dynamics and sediment
suspension are based on the shear force concept which was initially derived for sphere particle sitting on
a plane bed under steady current. However, both experimental and theoretical studies have revealed that
within the wave boundary layer over a rippled bed, strong vortex shedding dominants the particle entrain-
ment processes, which is very different from that in a plane bed conditions (e.g. Andersen and Faraci
(2003), Li and O’Connor (2007), van der A et al. (2010)). Consequently, the considerable uncertainties
in the predictions that rely on such an simple concept are often difficult to quantify. In addition, existing
turbulence closures also fail to represent coexistence of the low Reynolds number flows in the ripple trough
and the high turbulence region above the ripple crest (Barr et al., 2004). More importantly, the migration
of bedforms require complex deforming meshes and transport closures to deal with the large bed slope or
severe scour. Although noticeable progresses have been made in recent years (Marieu et al., 2008), these
difficulties still remains as major challenge.

Increasingly, alternative multi-phase approaches are attracting more attention because the bed deforma-
tion can be dealt with naturally in such a model as part of the solutions. Different modelling techniques have
been proposed in the literature, including the Euler-Euler approach or mixture theory approaches, which in
essence treat the sediment as an extra fluid phase. Similar to the model in Giri and Shimizu (2006), Penko
et al. (2013) used a mixture model to simulate ripple dynamics under oscillatory flows with noticeable suc-
cess. The model results highlighted the 3D nature of the vortex which needs to be taken in account for the
sediment suspension. However, models of this type often have limited inclusion of fluid-particle and inter-
particle interactions due to the assumption that the sediment behaves as a continuum. In high concentration
regions, especially below the bed surface where the concentration is approaching packed bed limit, these
models require many empirical approximations that potentially hinder their generic application to much
wider range of conditions. Instead, in the present study, we propose a new approach, based on a fixed grid
multiphase Euler-Lagrange (E-L) simulation, which fully couples dynamic bed evolution to the motion of
a sub-grid scale Lagrangian sediment phase. The motion of sediment particles are therefore represented
naturally and the fluid-particle interactions can be simulated on a physical sound basis.
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It should be noted that the simulation of bedforms using our E-L approach presents unique challenges
and opportunities. The largest challenge is probably the extremely large separation of space and time-scales.
Collision durations between sand particles a few hundred microns in size last on the order of micro-seconds,
and must be resolved by the particle time step, dtp. However, full scale sand ripples are 10s of centimetres in
length and appear in flows with oscillatory periods of 5-10 seconds or more (e.g. Nielsen (1992)). However,
only a small portion of the grains making up a sand ripple need to be simulated with such a small timestep.
These are the grains near the surface of the ripple, which are subject to the erosion/mobilization processes
driven by the flow. In this work, we present a novel approach to isolate and simulate only these grains as
the ripple evolves, reducing the computational cost by roughly an order of magnitude for a full scale ripple
simulation.

NUMERICAL MODEL
In this paper, we adopt a fixed grid, multiphase Euler-Lagrange simulation that fully couples dynamic

bed evolution to the motion of a Lagrangian sediment phase. Below we outline the governing equations for
both the sediment and fluid phase.

Sediment Motion
Motion of the sediment phase is computed by evaluating the sum of hydrodynamic and inter-particle

forces and torques acting on individual Lagrangian particles. Particle positions, xp, velocities, up, and
angular velocities, ωp, are integrated in time according to the following equations of motion:

d
dt

(xp) = up (1)

d
dt

(up) =
1

mp

∑
Fp = Fg︸︷︷︸

Gravity

+ Fpr︸︷︷︸
Pressure

+ Fd︸︷︷︸
Drag

+ Fl︸︷︷︸
Li f t

+ Fam︸︷︷︸
Added Mass

+ Fc︸︷︷︸
Collision

(2)

d
dt

(ωp) =
1
ip

∑
Tp = Tc︸︷︷︸

Collision

+ Th︸︷︷︸
Hydrodynamic

. (3)

Here, mp = π
6 d3

p and ip =
mpd2

p

10 are the particle mass and moment of inertia respectively. The particles are
assumed to be spherical, and their diameter, dp, is considered to be on the order of, or smaller than, the Eu-
lerian grid spacing. In this work, we consider forces resulting from drag, lift, added mass, pressure, gravity,
and collisions. Torques, and thus particle rotation, are considered to result from both inter-particle colli-
sions and local rotation of the flow. Due to the unresolved nature of the fluid-particle interface, expressions
for the hydrodynamic and inter-particle forces forces and torques acting on the particles employ closures
developed from theory, experiments and fully resolved simulation (DNS). The expressions used to compute
each force in the RHS sums of equations 2 and 3 are tabulated in Table 1. Where appropriate, any closure
model, its origin, and user user defined parameters are noted. The gravity force, Fg is simply the weight of
the particle. When combined the pressure force, Fp, which involves the gradient of the total fluid pressure,
the particles respond to both buoyancy and local variations in dynamic pressure. The drag force, Fd is
computed based on the difference between particle velocity and the fluid velocity evaluated at the particle,
u f |p. The influence of solid particle concentration on the effective drag coefficient of solid suspensions
has been known for some time (Richardson and Zaki (1954)). Experiments and fully resolved simulations
have allowed for parametrization of the effective drag coefficient, Cd, as a function of Reynolds number,
Rep = ρpdp(up − u f |p)/µ f , and solid fraction, θp. In this work, the correlation of Beetstra et al. (2007)
is chosen because it is valid for the entire range of solid fractions (0 < θp < 0.6) and particle Reynolds
numbers encountered in the WBBL. We consider only shear based contributions to the lift force, Fl, and
we use the closure of Saffman (1965) for the lift coefficient, Cl. The expression for added mass force, Fam,
is based on an isolated rigid sphere in non-uniform flow (Crowe et al., 2011), with added mass coefficient,
Cam = 0.5.

In the high concentration sediment bed, particle motion is dominated by collisions and enduring con-
tacts between particles. The collision force, Fc, is based on a soft-sphere discrete element model. When
two particles, denoted i and j and illustrated in Figure 1, come into contact, equal and opposite repulsive
forces based on the spring-damper model of Cundall and Strack (1979) are generated. At any instant the
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Table 1: Expressions, parameters, and closure relations governing Lagrangian particle motion

Force / Torque Parameter Closure
Fg = −mpg g -

Fd
= mp

Cd
τd

(u f |p − up) -
Cd = 1

18

(
A θp

θ f
+ BRep

)
A = 180 +

(
18 +

θ4
f

θp

) (
1 + 1.5

√
θp

)
B =

.31
(
θ−1

f +3θ f θp+8.4Re−0.343
p

)
1+103θ f Re

2θ f −2.5
p

Ref Beetstra et al. (2007)

Fl
= mpCl

ρ f

ρp
(u f |p − up) ×

(
∇ × u f |p

)
- Cl = 1.61∗6

πdp

√
µ f

ρ f

∣∣∣∇ × u f |p

∣∣∣
Ref Saffman (1965)

Fam = mpCam
ρ f

ρp

(Du f |p

Dt −
dup

dt

)
- Cam = 0.5 Ref Crowe et al. (2011)

Fpr = −Vp∇P|p
Fc =

∑
i, j

F n
c, j→i + F t

c, j→i

F n
c, j→i =

−kcδi jni j − ξcu
n
i j (δi j ≤ αc) kc, α, ec ξc =

−2 ln ec

√
1
2 kc(mp,i+mp, j)

(π2+(ln e)2)
0 (otherwise)

F t
c, j→i = −ϑ

∣∣∣∣F n
c,i j

∣∣∣∣ ti j ϑ -

Tc =
∑
i, j

(
dp,i

2
ni j × F

t
c, j→i

)
- -

Th = ip
60

64π
ρ f

ρp
Ct |ωrel|ωrel -

Ct = Ct1√
Rer

+ Ct2
Rer

+ Ct3Rer

Ref Pan et al. (2001)
Rer Ct1 Ct2 Ct3

Rer < 1 0 16π 0
1 ≤ Rer < 10 0 16π .0418
10 ≤ Rer < 20 5.32 37.2 0
20 ≤ Rer < 50 6.44 32.2 0
50 ≤ Rer < 100 6.45 32.1 0

particles are separated by distance,
∣∣∣xi − x j

∣∣∣. The total relative velocity of the two spheres at the contact
point can be written as,

ui j = up,i − up, j +

(
1
2

dp,iωp,i +
1
2

dp, jωp, j

)
× ni j, (4)

where nij is the unit normal vector pointing from particle i to j. This can be decomposed into the normal
and tangential components, un

i j =
(
ui j · ni j

)
ni j and ut

i j = ui j − un
i j. Upon collision, a repulsive force is

generated in the normal direction based on the overlap, δi j =
∣∣∣xi − x j

∣∣∣ − de f f , and relative normal velocity,
un

i j, of the two spheres. The spring constant, kc, force range, α = 0.075, coefficient of restitution, ec and
coefficient of friction, ϑ are chosen on a case by case basis. These parameters set the collision duration,

τc =

√(
mp,i + mp, j

) (
π2 + ln(ec)2) /(2kc), which must be resolved by the particle timestep, dtp.

Torques acting on the individual particles are computed using two simple models. Due to oblique
collisions, inter-particle contacts will result in rotation. We model this using the simple Coulomb friction
law, which as been demonstrated to provide reasonable accuracy and good speed for densely packed sys-
tems (Capecelatro and Desjardins, 2012). A hydrodynamic couple, Th is computed based on relative rate
of particle and fluid rotation, ωrel = 1

2 (∇ × u f |p) − ωp with the torque coefficients suggested by Pan et al.

(2001), valid for rotational Reynolds numbers, ReR =
d2

p |ωrel |

4ν f
, up to 100.
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Figure 1: Schematic of soft-sphere collision between particles “i” and “j”.

Fluid Motion
The sediment motion is coupled to the Eulerian fluid motion by solving the volume filtered Navier-

Stokes equations (Anderson and Jackson, 1967)

∂

∂t
(ρ f θ f ) + ∇ · (ρ f θ fu f ) = 0 (5)

∂

∂t

(
ρ f θ fu f

)
+ ∇ ·

(
ρ f θ fu fu f

)
= −∇p + ∇ ·

(
µe f f

(
∇u f + ∇uT

f −
2
3
∇ · u f

))
− θ fρ fg + fp→ f (6)

In this form, the conservation of mass and momentum equations are modified to account for the volume
of fluid which is locally displaced by the sediment. For dynamic sediment beds, temporal and spatial
gradients of the sediment fraction can be very high, and we expect that this attribute of the volume filtered
equations may be important for correctly capturing bed morphology. In addition to the volume exclusion
effects, Eqn. 6 also contains an inter-phase momentum transfer term, fp→ f . This term includes the equal
and opposite reaction from the particle surface onto the flow. It can be expressed as,

fp→ f (xcv) = −

np∑
ip=1

F
(
xcv, xp

)
(Fp + Fd + Fl + Fam). (7)

Here, F
(
xcv, xp

)
is the filter kernel which transfers a property from the Lagrangian sediment phase to the

fixed Eulerian grid. Note that body forces (gravity) and collision forces are excluded from this reaction.
The fluid volume fraction is computed using the same filter operator to transfer the Lagrangian particle
volume,Vp =

πdp3

6 , to the fixed grid.

θ f (xcv) = 1 −

∑np

ip=1 F
(
xcv, xp

)
Vp

Vcv
(8)

In this work, a Gaussian filter function is used, with standard deviation, σ = 2dp.
In order to account for the increased viscosity of non-dilute regions of the flow, a model for the effective

mixture viscosity is sometimes adopted in E-L simulations using the volume filtered equations (Patankar
and Joseph, 2001; Capecelatro and Desjardins, 2012). An Eiler’s equation (Eilers, 1941) model for the
mixture viscosity of a particle suspension has been applied successfully within a mixture theory frame-
work (Penko et al., 2009, 2013), and it is adopted for use in the present model. The viscosity of the fluid
phase is,

µ f = µ0

[
1 +

1.5θpθCP

θCP − θp

]
, (9)

Here, µ0 is the nominal fluid viscosity in the absence of sediment, and θCP is the close packed sediment
fraction, taken to be 0.615. Additional contributions to the effective viscosity due to unresolved turbulent
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stresses can be modelled using LES, which will be an area of future effort. In this work, the fluid motion is
resolved to near particle scale, and it is assumed that such contributions will be small.

The continuous fluid phase and Lagrangian sediment phase are evolved by solving equations 1-3, 6
and 6 using a new structured grid implementation of the algorithm presented by Shams et al. (2011). Ex-
tensive validation of the single phase solver can be found in Skitka (2013), and in Finn et al. (2014) for the
Lagrangian sediment solver.

VALIDATION: HINDERED SETTLING OF A PARTICLE SUSPENSION
In the WBBL, sediment concentrations range from very dilute to the random close packed limit. A

successful simulation of sediment dynamics in this environment must faithfully capture the sediment-fluid
interactions over the entire range of solid fractions. In order to validate the behaviour of the coupled Euler-
Lagrange model for WBBL flows, we consider the hindered settling of solid particles in an unbounded
domain. A triply periodic domain with Lx = Ly = Lz = 64dp is chosen for the simulations and discretized
with 643 control volumes with spacing ∆ = dp. Identical, non-overlapping particles are seeded at random
in the box to obtain target solid fractions in the range 0.05 ≤ 〈θp〉 ≤ 0.6. The fluid and particles have
the properties corresponding to the fluidization experiments of Baldock et al. (2004) using uniform glass
beads in water (dp = 0.35mm, ρp = 2500kg/m3 ρ f = 1000kg/m3, µ0 = 0.001kg(ms)−1). Particle collision
properties are chosen to be kc = 1000, e = 0.65, ϑ = 0.15. The particles are initially at rest and settle under
the action of gravity (gy = −9.81ms−2), while a uniform body force is applied to the fluid in the positive y

direction to balance the weight of the particles. The simulations last for a total time, t = 30
(
ρpd2

p

18µ

)
, which

was determined to be sufficiently long for the (average) settling velocity to achieve a stationary value.
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Figure 2: Hindered settling of a particle suspension under the action of gravity. (a) shows particles coloured
by instantaneous fall velocity for mean solid fraction, 〈θp〉 = 0.3. (b) shows fall velocity normalized by the
single particle terminal velocity, vt, as a function of 〈θp〉. Comparisons are made with the Richardson and
Zaki (1954) correlation, and the experimental measurements of Baldock et al. (2004).

In general the particles do not all settle at the same velocity because they induce an unsteady flow and
form clusters of fast and slow moving particles. This is illustrated in Figure 2a for the case 〈θp〉 = 0.3. Each
particle is coloured by its normalized fall velocity vp/vt, where vt is the unhindered terminal velocity of a
single particle (vt = 0.048ms−1 in this case). The normalized particle fall velocity (in a frame which the
mean fluid velocity is zero) is averaged over all grains and plotted vs 〈θp〉 alongside the experimental data
in Figure 2b. We also plot the empirical relationship of Richardson and Zaki (1954) for these conditions
(Ret = 16.8, n = 3.37) . Overall, the agreement with experiments is excellent over almost the entire
range of solid fractions. At the highest solid fractions, 〈θp〉 ≥ 0.55, the numerical simulations over-predict
the experimental results somewhat. This is likely due to micro-structural phenomena, occurring at scales
smaller than the particle size, which cannot be resolved in the present approach.

SIMULATION OF FULL SCALE RIPPLE DYNAMICS
The model is now applied to oscillatory flow over a single, full scale, mobile sand ripple, in conditions

corresponding to the experiments of Van der Werf et al. (2007). Their dataset is unique in that it provides
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(a) Domain configuration (b) Initial Ripple Shape

Figure 3: Configuration of the dynamic ripple simulation

detailed velocity and concentration data for full-scale, well characterized ripples obtained in a closed loop
oscillatory flow tunnel. Their two dimensional sand ripples were generated from an initially flat bed by
a velocity skewed free-stream (see inset of Figure 3). In this paper, we consider case MR5b63 from the
experimental database, where the equilibrium ripple wavelength and height were measured to be, λ = 41cm
and η = 7.6cm respectively. The skewness of the flow resulted in asymmetric, forward leaning ripples,
a net transport in the “offshore” (negative x) direction and a ripple migration “onshore” (positive x). Re-
producing time dependent velocity and concentration fields in these conditions represents a significant
challenge for any model, and we use this difficult test to show the capability of the coupled E-L approach.

Figure 3 illustrates several aspects of the simulation setup. Our domain dimensions, shown in Figure 3a,
are chosen to be Lx = λ in the stream-wise direction, Ly = 4η in the wall normal direction, and Lz = 30δx in
the span-wise direction, where δs is the stokes layer thickness based on the free stream velocity. The domain
is periodic in the stream-wise and span-wise directions. A rough wall is imposed at the bottom wall (y=-
9.6cm) by fixing any particles coming into contact with this boundary. At the top boundary (y=21cm), a zero
stress condition is imposed. The sand used in the experiments was well sorted with d10, d30, d50, d70, d90
equal to 0.25mm, 0.35mm, 0.44mm, 0.53mm, and 0.66mm respectively. In the simulations, only a single
sand size of dp = d50 = 0.44mm is used, although our future simulations will investigate the effects of
the particle diameter distribution on transport characteristics. The initial ripple shape is created in a two
step procedure. First, 19 million particles are released from random positions above the rough wall, and
allowed to settle into a random close-pack configuration shown in Figure 3a. We then use the ripple profile
generated by Van der Werf et al. (2008) as a periodic fit to the experimental measurements, to create the
ripple shape shown in Figure 3b. After trimming away particles, roughly 12.5 million particles remain in
the domain. The fluid domain is discretized with a uniform 768 × 576 × 64 grid, which corresponds to a
cubic spacing just larger than the particle diameter, ∆ = 0.5mm = 1.13dp. Particle collision parameters are
chosen to be kc = 1000, e = 0.5, ϑ = 0.1.

The flow is started from rest and a time dependent body force is applied to both the flow and particles
(see Calantoni and Puleo (2006) for the importance of the latter) so that the free stream velocity, U(t)
matches the second order Stokes free stream velocity,

U(t) = u1 cos(ωt) + u2 cos(2ωt). (10)

Here, ω = 2π/T is the angular frequency, T = 5s is the period, and u1 and u2 are 0.54 and 0.095 m/s
respectively. The flow is run for a total of four periods which, in this preliminary study, seems at least
qualitatively adequate for any initial transients to dissipate.

Isolation of mobile sediment
Simulating particle-particle and particle-fluid interactions for 12.5 million sand particles for 20 seconds

represents a significant computational overhead. To minimize the amount of effort dedicated to computing
the soft-sphere particle interactions, the bottleneck of the simulation, we employ a novel approach to isolate
and simulate only the grains near the surface of the ripple. At regular intervals, roughly every 10ms, a



COASTAL ENGINEERING 2014 7

mobility flag is computed for each particle, based on its depth, Dp, below the ripple surface. The particle
flag takes one of the three following values:

• Mobile (Dp < 9dp): The particle is mobile, and will be advanced according to equations 1-3, using
the time-step dtp. dtp is set to be roughly 0.1τc

• Fixed (9dp < Dp < 18dp): The particle position is fixed, but the particle interacts with mobile
particles through collisions. It will also interact with the flow via the local volume fraction, θp and
the inter-phase coupling term, f2w. Because collisions with mobile particles must be computed, a
time-step of dtp is used.

• Dormant (18dp < Dp): The particle position is fixed, and the particle interacts with the flow only.
No collision computations are required. These forces acting on these particles are computed using
the (larger) fluid time-step, dt f .
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Figure 4: Dynamic isolation of mobile particles near ripple surface.

In Figure 3b, each particle in the initial configuration is coloured corresponding to its mobility flag.
The value of Dp is computed by first integrating θp in the y direction, taking advantage of the structured
Cartesian grid, and then interpolating the result to the individual particles. The ripple surface is determined
as the height where the θp > 0.6. As the ripple evolves, so will Dp and the mobility flag should be
recomputed. This dynamic procedure is shown in Figure 4 for several instances in the 4th cycle, illustrating
how the ripple shape deforms significantly because of the flow. The particles are sorted and stored in
memory based on this flag, allowing for efficient access of the mobile particles as a subset of all particles in
the domain. The overhead associated with this computing the mobility flag, and rearranging the particles in
memory is negligible, and results in a roughly order of magnitude speed-up for this simulation compared to
the case where all particles are considered to be mobile.

Experimental comparison
Because of the limited amount of flow periods simulated, ensemble averaging of the velocity and

concentration fields is not possible. Instead, we take advantage of the two-dimensional nature of the ripple,
and perform span-wise averaging of the results over the 4th cycle. By averaging over the 64 control volumes
in the z direction, span-wise averaging produces the two dimensional fields 〈u(x, y, t)〉 and 〈θp(x, y, t)〉 that
we will interrogate below and compare with experimental data. In some instances there is still a significant
amount of noise in the span-wise averaged variables, and additional simulations will be performed in the
near future to facilitate ensemble averaging over several periods.

A comparison of the near bed velocity at 8 points along the ripple with the experimental PIV mea-
surements is made in Figure 5. The probe locations were chosen to match the experimental measurement
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Figure 5: Comparison of near bed velocity time-series at the 8 probe locations shown in Figure 3b. —�—
present simulations, (—) PIV, (- - -) PIV free stream.

locations as closely as possible. However, because the ripple does deform significantly during each cycle,
and some erosion of the ripple peak occurs during the simulation, an exact comparison is not possible. The
approximate probe locations corresponding to each sub-figure are shown in Figure 3b, and are 9mm above
the numerically simulated ripple surface, where the span-wise and cycle averaged solid fraction is equal to
0.6. Each sub-figure shows 〈u(x, y, t)〉 along side the ensemble averaged measurement from the experiment.
In addition, the experimentally measured free stream velocity is shown for reference. Despite the lack of
ensemble averaging, the results are in good agreement at all near bed locations. Several features, known
to influence sediment transport, are observed in the simulation results. The near bed flow reversal occurs
ahead of the free stream, in good agreement with the PIV data at almost all locations. The maximum on
and offshore velocities also seem to be very well predicted by the simulation, both above the crest and in
the trough, indicating that vortex creation and ejection is well captured.
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Figure 6: Comparison of suspended sediment concentrations with ABS data from Van der Werf et al.
(2007). (a) shows the cycle and ripple averaged suspended sediment concentration as a function of height.
(b), (c), and (d) show the concentration at y/η = 0.30, y/η = 0.89, and y/η = 1.13, directly above the ripple
crest. ◦ ABS , —�— present simulations

Turning our attention to suspended sediment concentrations, we make two types of comparisons with
the experimental data. In Figure 6a, we compare the cycle average suspended sediment concentration as
a function of height above the ripple crest with the experimentally measured (ABS) concentration. Within
1.5η of the crest there is excellent agreement between the measurements and simulation. Above this level,
a strange departure of the two curves is observed. We believe that this is due to contamination by the upper
(zero stress) boundary at y/η ≈ 3. This boundary dampens any turbulence and suppresses vertical transport
of sediment higher up into the water column. The result is the observed bulge in the concentration curve at
y/η ≈ 2. Future simulations will extend the simulation by several ripple heights to hopefully remove this
effect. In Figure 6b we compare the time-series of suspended sediment concentration at three points above
the ripple crest with the ensemble averaged ABS data. It is difficult to make precise comparisons because
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of the lack of temporal resolution and noise in the simulation data. Maximum and minimum concentra-
tion magnitudes predicted by the simulation do seem to be in line with the experimental measurements at
each location. Future simulations with ensemble averaging over several cycles should facilitate a better
comparison of this result.

Finally, we examine the interaction between the vorticity and suspended sediment during a single
period. Despite a two dimensional ripple geometry in this case, the turbulent flow near the bed does have a
three dimensional structure. We leave a three-dimensional analysis of this flow for later work, and instead
focus on how the E-L results can be used to investigate the interactions of the bed with the large scale
2D flow features with large span-wise (z) vorticity component. Figure 7 shows contours of the z vorticity
component in the lower part of the boundary layer, along with a contour (black line) of high suspended
sediment concentration (13 g/L). The letters in the individual frames correspond to to the phase indicated
by Figure 4. The flow accelerates to the right during the first two frames (Figure 7a-b), causing significant
shear over the ripple crest. The flow decelerates and reverses in the trough ahead of the free stream creating
a large CW vortex in the lee side trough (Figure 7c). The stress on the ripple due to the creation of this lee
vortex is large enough to significantly deform the ripple (Figure 7c-d). As the free stream flow reverses, the
lee vortex is ejected and caries with it a large amount of sediment which was picked up from the lee side
slope (Figure 7d-e). The flow accelerates less quickly to the left and creates a similar but weaker vortex in
the stoss side trough (Figure 7f-g). This vortex is less effective at entraining and ejecting sediment from the
stoss side trough, and as a result there is a net transport to the left (offshore), even while the ripple migrates
to the right (onshore).

(a) t/T=0 (b) t/T=0.15 (c) t/T=0.30 (d) t/T=0.45

(e) t/T=0.60 (f) t/T=0.75 (g) t/T=0.90

Figure 7: 2D, span-wise averaged contours of z vorticity component (red = ccw rotation, blue = cw rota-
tion). The black line shows the region of high suspended sediment concentration (13 g/L).

CONCLUSION

In this paper, we have demonstrated the capabilities of a coupled Euler-Lagrange model for simulating
the dynamics of full scale sand ripples in oscillatory flow. In this approach, the sediment phase is evolved
by computing hydrodynamic and inter-particle forces on each individual grain, while the fluid phase is
governed by the volume-filtered Navier-Stokes equations. The model is first validated by comparing the
hindered settling velocity of a suspension of glass beads with the experimental data of Baldock et al. (2004),
showing very good agreement over a wide range of solid fractions. It is then extended to the case of oscil-
latory flow over a full scale sand ripple corresponding to the experiments of Van der Werf et al. (2007). The
computational demand for involved in such a simulation is extremely high, mostly due to the separation of
collisional and hydrodynamic space and time-scales. To make the simulations tractable, mobile particles
near the surface of the ripple are isolated from the remaining particles, and only these particles are used
in the expensive inter-particle collision computations. Despite the preliminary nature of the results, they
demonstrate that the E-L model is a very capable tool for studying dynamics of sediment-turbulence inter-
action in the WBBL. Our future goals involve incorporating poly-disperse sediments and a LES turbulence
closure in the model, and obtaining longer simulation times so that ensemble averaging of the results can
be performed.
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