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Water wave breaking and the resulting surf-zone turbulence play a role in sediment transport, wave damping, and
mixing processes. The vortex structures associated with wave breaking carry large amount of turbulent momentum
and turbulent kinetic energy and therefore have a crucial effect on the safety of vessels and structures located in the
surf zone. In this study, turbulent vortical structures under a broken solitary wave is studied using a three-dimensional
Smoothed Particle Hydrodynamics (SPH) method. A broken solitary wave is of interest since the generation and
evolution of the three-dimensional vortex structures under a broken wave can be isolated from the case of a periodic
wave train, which has undertow and residual turbulence induced from previously broken waves. Further, a solitary
wave is a first approximation to a tsunami wave. The numerical model predicts water surface evolution very well in
comparison with the experimental results of Ting (2006). The numerical results show organized coherent structures
trailing the wave and characterized by reversed horseshoe (hairpin) vortices, traveling downward, which appear to
be the previously found obliquely descending eddies. These horseshoe coherent structures transport momentum and
turbulent kinetic energy downward into the water column and likely have a significant role in bed and beach erosion.
Different terms of vorticity equations are studied and it is concluded that vortex stretching and vortex bending play an
important role on the generation and evolution of reversed horseshoe structures.
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INTRODUCTION
As waves propagate towards nearshore regions and break, an intensive turbulence is generated, which

plays a crucial role in sediment transport, wave damping, mixing processes, and thermal diffusion within the
underlying flow field. Investigation of the turbulence under breaking wave can give a better understanding
of wave dynamics in the nearshore regions and the resulting vortex structures. In addition, the vortex
structures and rotations associated to the water wave breaking can have a dominant effect on the safety of
vessels and structures located in the coastal regions.

The wave dynamics and resulting turbulence have been mostly studied by two dimensional numerical
models. Lin and Liu (1998) performed a two dimensional RANS numerical model to study the wave prop-
agation and breaking in the surf zone. They found a ‘roller’ region in the breaking wave front and reported
it as a source region of turbulence generation. Watanabe et al. ( 1999) used large-eddy simulation (LES)
method to study the structure of turbulence flow field under spilling and plunging breakers. They reported
characteristic structure of large-scale eddies under broken waves and referred to them as ‘horizontal eddies’
and ‘obliquely descending eddies’. Christensen (2006) also performed LES method to model spilling and
plunging breakers. The order of magnitude of the turbulent energy in the numerical results was found to be
in agreement with experimental results. As the waves break, three dimensional turbulence and vortex struc-
tures are generated within the flow field beneath the broken waves. Hence a three-dimensional numerical
method can lead to a better understanding of the generation mechanism of large-scale eddies under broken
waves.

In this study three-dimensional Smoothed Particle Hydrodynamics (SPH) numerical method is used
to investigate broken solitary waves dynamics within the surf zone and the turbulence structure within the
underlying flow field. SPH is a Lagrangian, mesh-free particle method, which was first introduced by
Gingold and Monaghan (1977) to solve gas dynamical problems of astronomical interest. SPH has been
used to model a vast range of problems including fluid mechanics problems and was shown to be capable of
modeling flows with complicated surface deformations. Monaghan (1994) modeled a dam-break problem
as well as water waves using SPH and the Navier-Stokes equations. Monaghan and Kos (1999) continued
their researches on solitary waves in the surf zone and Scott Russell’s wave generation using SPH method.
Other wave-related studies using SPH numerical method include breaking waves (Monaghan et al., 2003),
impact of wave on structures (Dalrymple et al., 2002; Gómez-Gesteira and Dalrymple, 2004), and waves in
the surf zone (Dalrymple and Rogers, 2006).

Water waves breaking in the surf zone was also investigated in various experimental studies. Nadaoka
et al. (1989) performed an experimental study in a 0.6 m deep, 0.4 m wide, and 20 m long wave channel,
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equipped with a flap-type wave generator. They investigated periodic spilling waves breaking on a plane
beach and found two-dimensional large-scale spanwise vortex structures under breaking waves with axes
parallel to the crest line. They also found three-dimensional large-scale vortex structures behind the bro-
ken waves and called them obliquely descending eddies. The three-dimensionality of the flow structure
behind the wave crest, was visualized using air bubbles. Ting and Kirby (1994) conducted a series of ex-
periments regarding the turbulence structure under plunging and spilling breakers and compared the results
with each other. Experimental results revealed that the turbulent kinetic energy is transported landward
under a plunging breaker and is dissipated within one wave cycle, whereas the turbulent kinetic energy is
transported seaward under a spilling breaker and the dissipation rate is much slower.

In this study, three-dimensional SPH numerical method is used to model a spilling solitary wave.
The three-dimensional vortex structures under the broken waves and their generation mechanism are also
investigated

SPH NUMERICAL METHOD AND GPUSPH MODEL
SPH numerical method

SPH was developed as mesh-based methods were found to be problematic for problems with large
deformations and lack of defined boundaries. SPH numerical method is a Lagrangian method where a kernel
approximation is used to represent the integral form of the governing equations. The partial differential
equations (PDEs) are converted to ordinary differential equations (ODEs) in discretized form with respect
to time only. The ODEs are then solved using an integration algorithm for each time step and the field
variables including velocities and positions are computed.

The kernel function that is used in our study is called Wendland kernel function and has the advantage
of being based on one algebraic equation and having a compact support.

W(q, h) = αD

{
(1 − q

2 )4(1 + 2q) 0 ≤ q ≤ 2;
0 q > 2. (1)

The parameter h is the smoothing length of the kernel function, which indicates the support domain of the
kernel function. q is equal to r/h, where r is the distance between two particles. αD is equal to 3/(4h),
7/(4πh2) and 21/(16πh3) for one, two and three dimensional space respectively.

The governing equations that are solved to model the water waves are conservation of mass equation
and conservation of momentum equation. The differential form of the conservation of mass equation is
given as:

∂ρ

∂t
+ ρ(∇.~u) = 0 (2)

where ρ is density, ~u is velocity, and t is time. The SPH form of conservation of mass equation can be
written as:

∂ρa

∂t
= −
∑

b

mb~ub∇aW(rab) + ~ua

∑
b

mb∇aW(rab)

=
∑

b

mb(~ua − ~ub)∇aW(rab)
(3)

where a is the particle of interest, b is the neighboring particle, and m is the particle mass. The differential
form of the momentum equation is given as:

D~u
Dt

= −
1
ρ
∇P + ~g + ~Θ (4)

The first term on the right hand side of the above equation is the pressure gradient term that can be written
in SPH form as:

−
∑

b

(
Pa

ρ2
a

+
Pb

ρ2
b

)mb∇aW(rab) (5)
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The second term on the right hand side of the equation (4) is the gravitational acceleration, which is defined
as: ~g = (0, 0, 9.81) m

s2 . The third term on the right hand side of the equation (4) is the viscous term. The
effect of turbulence is considered in the SPH method using a model similar to the Sub-Grid Scale (SGS)
turbulence model in the Large Eddy Simulation (LES) method (Dalrymple and Rogers, 2006). SPH form
of turbulent shear stress term of momentum equation can discretized as:

1
ρ
∇.τab|a =

∑
b

mb(
τab|a

ρ2
a

+
τab|b

ρ2
b

).∇aWab (6)

where summation is made within the neighboring particles of the particle of interest. In our study we
used the SPS approach of Dalrymple and Rogers, (2006) with constant Smagorinsky coefficient. In weakly
compressible SPH, the fluid is assumed to be weakly compressible, with a very small density fluctuations.
This assumption allows the pressure to be calculated from an equation of state as (Monaghan and Kos,
1999):

P = β[(
ρ

ρ0
)γ − 1] (7)

where ρ0 is the initial density, γ is chosen to be equal to 7, and parameter β is calculated as:

β =
ρ0c2

γ
(8)

GPUSPH model
Previously, parallel computations were mostly performed using multiple Central Processing Units

(CPUs). Recent advances in computer technology permit the use of Graphics Processing Units (GPUs)
for parallel computing with high computational power and low expenses. Three-dimensional SPH is com-
putationally intensive and it has a data-parallel nature. On the other hand, the GPU cards have parallel
structures. Therefore, the three-dimensional SPH method performs very well on GPU cards. In 2007, a
new GPU parallel architecture is introduced as Compute Unified Device Architecture (CUDA), which uses
high-level languages such as C, C++, and Fortran to program the graphic cards.

GPUSPH is an open source package that performs the massive computations of Smoothed Particle
Hydrodynamics method on Nvidia graphic cards for various applications. GPUSPH was started by Alexis
Hérault (Hérault et al. 2010) in a study of lava cooling. It uses CUDA language and was inspired by the
Nvidia SDK program Particles (http : //www.ce. jhu.edu/dalrymple/GPUS PH/Home.html). GPUSPH is
also capable of illustrating real-time images of fluid parameters such as velocity and pressure. GPUSPH is
written in an object-oriented platform and consists of several interacting objects. Therefore, new features or
physical problems can be easily added to the existing platform. For the wave-related numerical modeling, a
couple of additional features are added to the existing package (Farahani et al., 2014). Using these features,
fluid parameters at Eulerian nodes can be observed as well as Lagrangian particles, which leads to a better
comparison between numerical SPH results and Eulerian experimental results. In addition, free-surface
particles can be detected at each time step, which makes the calculations of mean parameters possible.

THREE-DIMENSIONAL VORTEX STRUCTURES UNDER A BROKEN SOLITARY WAVE
wave tank set-up

Different types of large-scale vortex structures under a broken solitary wave are investigated using the
three-dimensional SPH method. The wave tank used in the numerical study is 25 m long, 0.9 m wide and
is located on a 1 in 50 plane slope. The wave tank set-up was inspired by the solitary wave experiments of
Ting (2006). A solitary wave of 0.22 m height is generated using a piston type wave generator. The water
depth at the location of the wave generation is equal to 0.3 m. Figure 1 illustrates the wave tank set-up.

The Goring and Raichlen (1980) approach is used to generate the waves. The basic concept is to match
the velocity of the wave generator to the corresponding depth-averaged velocity of the water particles.The
generation equation for solitary wave is defined as:

ζ(t)
S

=
1
2
{1 + tanh 2[(3.8 +

H
h

)(
t
τ
−

1
2

) −
H
h

(
ζ

S
−

1
2

)]} (9)

where ζ is the wave generator displacement, S is the stroke, H is the wave height, h is the water depth, and
τ is the duration of wave generator motion.
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Figure 1: Schematic plot of experimental set-up (Ting, 2006)

Numerical results
Numerical results of spilling solitary wave is compared to the experimental results. The wave heights

were measured at 12 stations between the wave generator and the still water shoreline. The distance be-
tween adjacent stations was 1 m. Figure 2 illustrates the ensemble-averaged water surface profile in both
experimental measurements and numerical simulation.

Figure 3 illustrates the numerical results as well as the experimental results of ensemble-averaged hori-
zontal velocity under the solitary wave. In this figure the numerical time = 3.5 s is equal to the experimental
time = 34 s. The instantaneous velocity is decomposed to ensemble averaged velocity and the turbulent
velocity as:

~u =< ~u > +~u′ (10)

The coherent vortex structures are detected using λ2 criterion (Jeong and Hussain, 1994). In this
method, the tensor S 2 + Ω2 is calculated where S and Ω are the symmetric and antisymmetric components
of velocity gradient tensor ∇~u. The term λ2 is obtained as the second largest eigenvalue of this tensor and a
vortex core is defined as a region with a negative λ2 threshold. Figure 4 illustrates the coherent structures
detected by λ2 criterion at t=5.5 s of the numerical simulation.In this figure, a reversed horseshoe vortex
structure can be observed at the position of the measurement location.

GENERATION OF 3D VORTEX STRUCTURES
Horseshoe (hairpin) vortex structures

A coherent structure is defined as “A connected turbulent fluid mass with instantaneously phase-
correlated vorticity over its spatial extent" (Hussain, 1986). The coherent structures play an important
role in the transport of mass, momentum, and heat. In our study, different types of coherent vortex struc-
tures are observed and studied. Spanwise vortex structures are developed at the wave toe where the wave
front hits the water surface. Vertical vortex structures are observed at the tow of the broken wave. After
a short period of time, reversed horseshoe structures begin to develop and travel downward towards the
bed bottom.These structures are initiated from the portions of the spanwise roller where the curvature is
relatively high. Two legs of the reversed horseshoe structures have counter-rotating vorticities that were
previously observed as obliquely descending eddies and were assumed to be two separate vortex structures
(Nadaoka et al., 1989). In addition to reversed horseshoe vortices, there exist quasi-streamwise vortices that
are primarily in streamwise direction. Figure 5 illustrates the time history of the generation and evolution
of reversed horseshoe structures. The vortex structures are detected by the isosurface of λ2 = −50.
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Figure 2: Ensembled-averaged wave elevations (Left: Numerical results, Right: Experimental results) -
note: The time = 0.5 s of numerical results is equivalent to time = 31 s of experimental results

Figure 3: Four seconds of ensembled-averaged horizontal velocity under the solitary wave (Left: Numerical
result; Right: Experimental result) - note: The dash line in the experimental results corresponds to the
ADV measurements and the solid line corresponds to the PIV measurements. The time = 3.5 s of numerical
results is equivalent to time = 34 s of experimental results
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Figure 4: Vortex structures identified by the isosurface of λ2 = −25 at numerical time=5.5 s
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Figure 5: Vortex evolution after the broken wave at time = 3.5, 3.7, 3.9, 4.1, 4.3, 4.5, 4.7, 4.9, 5.1, 5.3, 5.5s.
The flow field is observed from above in a wave-following frame of reference.The vortex structures are
detected by the isosurface of λ2 = −50.
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Figure 5: (Continued)Vortex evolution after the broken wave at time = 3.5, 3.7, 3.9, 4.1, 4.3, 4.5, 4.7, 4.9, 5.1,
5.3, 5.5s. The flow field is observed from above in a wave-following frame of reference.The vortex structures
are detected by the isosurface of λ2 = −50.
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Figure 5: (Continued)Vortex evolution after the broken wave at time = 3.5, 3.7, 3.9, 4.1, 4.3, 4.5, 4.7, 4.9, 5.1,
5.3, 5.5s. The flow field is observed from above in a wave-following frame of reference.The vortex structures
are detected by the isosurface of λ2 = −50.

At time = 3.5 s, three reversed horseshoe structures (A, B, C) are initiated from the first horizontal
roller. At time = 3.7 s, another two reversed horseshoe structures (D, E) are generated from the second
horizontal roller. As time passes by, these structures evolve and propagate in -x-direction (from right to
left) in the wave-following frame of reference. Some of the reversed horseshoe structures undergo tearing
or pairing (vortex structure A, tears up at time = 4.1 s). New horseshoe structures are generated at time =

4.5 s (F, G, H), time = 4.9 s (I, L), time = 5.1 (J,K), time = 5.3 s (M,N), and time = 5.5 s (O,P).

Reynolds shear stresses and the turbulent momentum flux
Figure 6 presents the vortex structures behind the broken wave at time = 4.7 s and the resulting turbulent

velocity and turbulent momentum flux. One of the reversed horseshoe structures (vortex H in figure 5) is
selected and turbulent velocities (v′, ’w′), streamwise vorticity (ωx), turbulent momentum flux (−u′w′), and
kinetic turbulent energy (k = (u′2 + v′2 + w′2)/2) are computed. Large amount of turbulent momentum flux
and turbulent kinetic energy are generated at the middle of the two counter-rotating legs and at the outer
corner of the legs. The results are consistent with Kim and Moin (1986) and Yang and Shen(2009) results.

GENERATION OF THE VORTEX STRUCTURES
In this section, the generation mechanism of vortex structures including obliquely horseshoe struc-

tures (obliquely descending eddies) under broken water waves is discussed. Obliquely horseshoe structures
contain both vertical and spanwise vorticities. The vorticity equations can be written as:

Dωx

Dt
= ωx

∂u
∂x︸︷︷︸

Term one

+ ωy
∂u
∂y︸︷︷︸

Term two

+ ωz
∂u
∂z︸︷︷︸

Term three

(11)

Dωz

Dt
= ωx

∂w
∂x︸︷︷︸

Term one

+ ωy
∂w
∂y︸︷︷︸

Term two

+ ωz
∂w
∂z︸︷︷︸

Term three

(12)

where ωx, ωy, and ωz are the vorticity in x, y, and z directions. Term one of equation 11 is associated to
the vortex stretching of streamwise vorticity ωx. Term two and three of equation 11 are associated to vortex
turning from spanwise vorticity ωy and vertical vorticity ωz to streamwise vorticity ωx. Similarly, term one
and two of equation 12 correspond to vortex turning and term three corresponds to the vortex stretching.

Figure 7 illustrates the variation of vertical velocity over the width of the tank, on a plane that is parallel
to the x-y plane, at the position of z = 0.42m, and at time = 4 s. From this figure, one can note that the
vertical velocity over the width of the tank ∂w

∂y ) has non-zero values at the head of the broken wave.
When the spilling wave breaks, spanwise vorticity (ωy) has a nonzero value. Therefore term two of

equation 12 (ωy
∂w
∂y ) will have a nonzero value at the locations where ∂w

∂y has non-zero value. Therefore,
positive and negative components of vertical vorticity (ωz) will be produced at those locations (left hand
side of equation 12). In other words, spanwise vorticity turns to vertical vorticity at the positions of nonzero
∂w
∂y . When vertical vorticity is produced, term three of equation 11 (ωz

∂u
∂z ) will have a nonzero value at

the locations where ∂u
∂z has value. Figure 8 presents the velocity vectors and velocity magnitude under the

broken wave.
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Figure 6: Reversed horseshoe structures at time = 4.7 s. From top to bottom: (a) Streamwise vorticity
profile (ωx) and turbulent velocity vectors (v′, w′), (b) turbulent momentum flux (−u′w′), (c) Turbulent
kinetic energy

Vertical gradient of streamwise velocity ( ∂u
∂z ) has nonzero value beneath the broken wave. Term two of

equation 11 (ωy
∂u
∂y ) will have a nonzero value at the locations where ∂u

∂y has value. Figure 9 illustrates the
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Figure 7: Vertical velocity on a plane that is parallel to the x-y plane, at the position of z = 0.42m, and at
time = 4 s, showing the variation of vertical velocity over the width of the tank

Figure 8: Velocity vectors and velocity magnitude under the broken wave

variation of streamwise velocity over the width of the tank, on a plane that is parallel to the x-y plane, at the
position of z = 0.42m, and at time = 4 s. In equation 11 , both term two and three have nonzero values and
contribute in the generation of spanwise vorticity ωx (left hand side of equation 11).

The vorticity equation terms have been calculated separately to study the importance of each term.
Figure 10 presents the different terms of equation 11 and 12. Terms two and three of equation 11 (ωy

∂u
∂y ,

ωz
∂u
∂z ) are the largest and are associated to vortex turning from spanwise vorticity to streamwise vorticity
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Figure 9: Streamwise velocity on a plane that is parallel to the x-y plane, at the position of z = 0.42m, and
at time = 4 s, showing the variation of streamwise velocity over the width of the tank

and vertical vorticity to streamwise vorticity respectively. Term one and two of equation 12 (ωx
∂w
∂x , ωy

∂w
∂y )

also have large values, which are associated to vortex turning from streamwise vorticity to vertical vorticity
and spanwise vorticity to vertical vorticity respectively. Term one of equation 11 and term three of 12 (ωx

∂u
∂x

and ωz
∂w
∂z ), which are associated to vortex stretching in x and z directions, have smaller values.
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Figure 10: Vorticity equation terms. From top to bottom: ωx
∂u
∂x , ωy

∂u
∂y , ωz

∂u
∂z , ωx

∂w
∂x , ωy

∂w
∂y , ωz

∂w
∂z
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Figure 10: (Continued)Vorticity equation terms. From top to bottom: ωx
∂u
∂x , ωy

∂u
∂y , ωz

∂u
∂z , ωx

∂w
∂x , ωy

∂w
∂y , ωz

∂w
∂z

CONCLUSION
A three-dimensional numerical method called Smoothed Particle Hydrodynamics is used to model a

broken spilling water wave and the resulting three-dimensional vortex structures. The numerical results of
wave height profiles and surface evolution agree well with the experimental results of Ting (2006). Three
dimensional reversed horseshoe vortex structures are detected at the back of the broken wave, which were
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previously observed as obliquely descending eddies. The counter-rotating legs of the reversed horseshoe
structures correspond to the obliquely descending eddies. The physical mechanism of the generation and
evolution of reversed horseshoe coherent structures were discussed by analyzing the vorticity equations and
the vortex stretching and vortex turning terms.
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