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BACKFILLING OF SANDY COAST BREACHING AFTER THE 2011 TSUNAMI 

Vo Cong Hoang1, Hitoshi Tanaka2, Yuta Mitobe3, Keiko Udo4 and Akira Mano5 

Breaching of sandy coast was commonly observed on Yamamoto Coast, southern Miyagi Prefecture during the 2011 
tsunami. That made the shoreline having concave shape after the tsunami. Concave shoreline is bounded by two 
headlands. The recovery of concave shoreline is discussed through the analysis of satellite images. The relationship 
between dimensionless elapsed time with dimensionless recovery of shoreline at the central line of concave portion, 
and dimensionless of area of backfilling in the concave portion are studied based on analytical solutions of the one-
line model. For those two relationships, results obtained for case with rigid boundaries is asymptotic when the ratio 
between length of the bounded coast and width of concave portion is getting larger. Good agreement between 
measured data and theoretical results can be obtained. 
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INTRODUCTION  
The tsunami, which occurred on March 11, 2011, caused severe damages of coastal morphology in 

the northeast area of Japan. The significant changes and subsequent recovery of estuarine and coastal 
morphology in Miyagi Prefecture were reported by numerous researchers (e.g. Tanaka et al., 2012; Udo 
et al., 2012 and 2015; Tappin et al., 2012). One of the most typical damages commonly observed on 
Yamamoto Coast, which is located in the south of Miyagi Prefecture, was the breaching of sandy coast 
(Udo et al., 2015). Due to this tsunami-induced damage, shoreline after the tsunami had concave shape. 
Subsequently, fast recovery of some breaching could be observed.  However at many other places, the 
recovery of breaching was not observed. Along Yamamoto Coast, significant erosion occurred from 
1970s in response to the erosion protection of cliff coast in Fukushima Prefecture which was 
considered as main sediment source to maintain the shoreline of Yamamoto Coast.  In order to prevent 
the erosion on this coast, starting from 1990s until before the tsunami, 7 groins and 2 headlands have 
been constructed (Udo et al., 2015). Therefore, the effects of these coastal structures to the recovery 
process of morphology need to be considered in this case. 

Analytical solutions of one-line model have been developed and utilized widely in the computation 
of coastal morphology evolution. For the evolution of concave shoreline, Larson et al. (1987) 
introduced analytical solution of one-line model for case without rigid boundaries at both ends of 
concave region, whereas Hoang et al. (2015a) proposed analytical solution for case with rigid 
boundaries. Discussion on the relationship and applicability of them is still lack so far. Furthermore, 
these solutions are also very useful for engineering application, especially, in the case of beach 
nourishment (e.g. Dean, 2003).  

Taking all together, this study investigates the recovery of concave morphology bounded by 
headlands on Yamamoto Coast through analysis of satellite images and analytical solutions of one-line 
model. 

STUDY AREA & DATA COLLECTION 
This study mainly focuses on the beach of about 1000 m in length on Yamamoto Coast which is 

located on the south of Miyagi Prefecture, Japan (Figure 1). It is located about 7 km in the south of the 
Abukuma River mouth and bounded by two headlands No. 9 (south) and No. 11 (north).  

 Satellite images, which are utilized in this study, are downloaded from Google Earth. Collected 
satellite images are re-rectified to the World Geodetic System (WGS-84). A shore-parallel line, which 
is 178o clockwise from the north, was taken as the baseline for shoreline position measurement. 
Shoreline position, which is represented by wet/dry line, is extracted based on the difference of color 
intensity between water and land sides. All extracted shoreline positions were not corrected to tidal 
level due to the lack exact time of capture. 
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wave characteristics are assumed to be constant along the coast (independent of x and t). More details 
on how to derive the simplified governing equation of one-line model from Eq. (1) can be found in 
Larson et al. (1987). 

∂y

∂t
=ε

∂2y

∂x2              																																																				                (2)	

where  is diffusion coefficient, and it is given by the following equation. 

ε=
K(H2Cg)

b

8

ρ

ρs-ρ

1

1-n

1

DC+DB
       																																																	         (3)	

where K is dimensionless empirical proportionality coefficient in longshore sediment transport rate 
formula; H is wave height, Cg is wave group celerity, the subscript “b” denotes for the quantity at the 
breaking line; ρs is mass density of the sediment grains; ρ is mass density of water; n is sediment 
porosity. 

Larson et al. (1987) and Hoang et al. (2015a) presented the analytical solutions of one-line model 
which describe the evolution of concave shoreline for cases without and with rigid boundaries at both 
ends as Eqs. (4) and (5), respectively.  

 y= 
1

2
Y0 erfc

B-2x

4√εt
+erfc

B+2x

4√εt
          																																															(4) 

		y	=Y0 1-
B

L
-

2

π

1

n
sin

nπB

L
exp -

4εn2π2t

L2 cos
2nπx

L

∞

n=1

																																														 (5) 

where Y0 is the cross-shore distance of the beach cut region from the initial shoreline. It is estimated 
based on the actual condition of shoreline right after the tsunami; erfc is the complementary error 
function; B is width of concave portion; L is total length of sandy coast bounded by two headlands. It is 
noted that the headlands are treated as rigid boundaries which completely block the movement of 
longshore sediment (no longshore sediment transported in/out the area bounded by headlands); the 
condition ∂y/∂x=0 is applied at the headlands. The evolution of shoreline positions plotted from Eqs. 
(4) and (5) can be found in Hoang et al. (2015a).  

As mentioned earlier, during the recovery process, the concave portion was step by step backfilled 
by the sediment from adjacent sandy beaches. This backfilling can be expressed in term of the 
proportional recovery of shoreline position at the central line of concave portion (yc/Y0) or the 
proportional area of concave portion filled by sediment from adjacent coasts, PA.  

The backfilling of sediment into the concave portion was previously presented in Hoang et al. 
(2015b). In that study, concave shorelines at Akaiko Coast and at the Nanakita River mouth, which are 
located in the north of current study area, were taken as study areas.   

In case considering the proportional recovery of shoreline at the central line of concave portion, 
analytical solution for cases without and with rigid boundaries at both ends can be obtained from Eqs. 
(4) and (5) as Eqs.(6) and (7), respectively.  

 y*=erfc
1

4t*           																																																		               (6)	

y*= 1-
1

L* -
2

π

1

n
sin

nπ

L* exp -
4n2π2t*2

L*2

∞

n=1

 																																																   (7)	

where dimensionless parameters are defined below 

y*= yC/Y0                  																																																							        (8) 

t*= √εt/B            																																																				                 (9) 

L*= L/B                 																																																							         (10) 

In case of considering the proportional area backfilling, Dean (2003) and Hoang et al. (2015b) 
proposed analytical solutions of the one-line model to estimate PA for cases without and with rigid 
boundaries at both ends as Eqs. (11) and (12), respectively. 
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(a)  Relationship between t* and y* 

 
(b)  Relationship between t* and PA 

 
(c)  Relationship between t* and y* with measured data 

 
(d)  Relationship between t* and PA 

 
Figure 7. Relationships between t* and y*, and between t* and PA for case of concave shoreline  

Application to case of beach nourishment   
Theory on the backfilling of sediment into the concave portion is not only important for the 

recovery of concave shoreline case but also very useful in case of beach nourishment. It is interesting to 

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

t*

 y
*

 

 

without rigid
boundaries

  L/B=100  L/B=5  L/B=15

with rigid boundaries -  L/B=2

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 t*

 P
A
 -

 P
ro

p
or

tio
n

 o
f b

ac
kf

ill

 

 

with rigid boundaries -  L/B=2

  L/B=5

  L/B=100

without rigid
boundaries

  L/B=15

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

t*

 y
*

 

 

 with rigid boundaries
 L/B=8.8

without rigid
boundaries

 Meas. 

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

t*

 P
A
 -

 P
ro

p
or

tio
n
 o

f 
ba

ck
fil

l

 

 

 with rigid boundaries -  L/B=8.8

without rigid
boundaries

 Meas. 



 COASTAL ENGINEERING 2016 
 
8 

know that by making slightly modification, the mentioned theory can describe the remaining of 
sediment in the nourished area in the process of rectangular planform beach nourishment. Equations, 
which describe the proportional decreasing of shoreline position at the central line of nourished area 
(convex portion), yN

* , for cases without and with rigid boundaries at both ends, can be obtained from 
Eq. (13) when using corresponded y* from Eqs. (6) and (7). 

 yN
* =1-y*         																																																		                (13) 

By applying similar approach, the proportion  area of sediment remaining in the convex portion 
before shoreline position in this area reach the equilibrium stage, PAN, for cases without and with rigid 
boundaries, can be obtained from Eq. (14) when utilizing appropriate PA from Eqs. (11) and (12). 

PAN= 1- PA         																																																              (14) 

Figures 8(a) and (b) show the relationship between t* and yN
*  (Eq. (13)) and t* and PAN (Eq. (14)) 

for cases without and with rigid boundaries in case of beach nourishment. In that case, the remaining of 
sediment in the nourished area (convex portion) is considered. It is similar to case of concave shoreline 
recovery that the relationships between t* and yN

* , and t* and PAN obtained from case with rigid 
boundaries are asymptotic with those for case without rigid boundaries. The behavior of fast getting 
stable (no further significant decreasing) also can be found in this case. 

 

 

(a)  Relationship between t* and yN
*  

 

(b)  Relationship between t* and PAN 

 
Figure 8 Relationships between t* and yN

* , and between t* and PAN for case of rectangular 
planform beach nourishment 
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t* and PA for case with rigid boundaries get stable very early (no further significant recovery) 
compared to the case of without rigid boundaries. This is distinct difference between them. When the 
dimensionless recovery time is large and ratio between the length of beach bounded by two headlands 
and the width of concave portion is also large, the relationships between t* and y*, and t* and PA for 
cases without and with rigid boundaries are asymptotic together. Comparison between measured data 
and theoretical results has been done. Good agreement can be obtained when the dimensionless elapsed 
time is large. Applicability of above theory in the process of beach nourishment has been also 
introduced.  
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