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A NEW METHODOLOGY FOR EXTREME WAVES ANALYSIS BASED ON WEATHER-
PATTERNS CLASSIFICATION METHODS 

Sebastián Solari1 and Rodrigo Alonso1 

Extreme Value Analysis is usually based on the assumption that the data is independent and homogeneous. Historically 

the hypothesis of independence has received more attention than the hypothesis of homogeneity. The two most common 

ways of ensuring independence is to use annual maxima or peaks over threshold approaches. In wave and wind extreme 

analysis, the usual approaches to achieve homogeneous series have been to work to differentiate according to type of 

process generating the extreme value (e.g. differentiate between hurricanes and cyclones) and conduct directional 

analyzes. In this work an alternative approach is proposed, based on the use of cluster analysis methodologies to identify 

weather circulation patterns that results in extreme wave conditions. The proposed methodology is successfully applied 

to a case study in the Uruguayan South Atlantic coast. From the obtained results it seems that the proposed methodology 

is able to differentiate the data in homogenous subsets, not only in terms of the target variable (significant wave height) 

but also in terms of relevant covariables, like wave direction or sea level, and that the extreme value distribution of the 

whole data, obtained from the distributions fitted to each subset, is fairly insensitive to the number of weather patterns 

used in the analysis. 
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INTRODUCTION  

When performing extreme value analysis it is assumed that data are homogeneous, i.e. that all 

extremes came from the same parent distribution. Then, under the hypothesis that waves generated under 

different physical process would have different parent distributions, the engineer should recognize the 

different physical processes that lead to extreme condition before fitting extreme value distributions, e.g. 

in tropical areas, waves generated during hurricanes or typhoons (tropical cyclones) are analyzed 

separately from the rest of the data. 

At mid-latitudes extreme waves are typically generated by synoptic scale processes (i.e. mid-latitude 

cyclones); however, at any region it is possible to recognize several distinctive storm types, usually 

associated to the area where cyclones were generated and to the path they followed until arriving to the 

study site (e.g. Sartini et al. 2015). 

Directional extreme waves analysis is a relatively widespread practice for differentiate data in 

homogeneous populations, with the additional advantage that a design could be optimized by taking into 

account that different extreme distributions are associated to different wave directions. (e.g. Jonathan et 

al. 2008). However, there are two unresolved issues associated with the directional extreme analysis: (a) 

it is not straightforward to define the number and width of directional bins that should be use, and (b) 

directional classification of extremes is unable to differentiate among storms of different origin resulting 

in the same wave direction (particularly relevant in intermediate and shallow waters). In addition, 

directional analysis can only be applied to directional variables (like winds or waves), but not to scalar 

variables of interest in coastal engineering (like storm surges of precipitation). 

An alternative to directional extreme analysis, aimed to identify homogeneous populations of extreme 

events, is the use of weather patterns. Weather patterns (WP) are typical synoptic conditions for a given 

area that are usually given as average fields of some atmospheric variable, like pressure or wind. These 

WP are commonly used on atmospheric sciences, and to some extent also in hydrology, in order to 

characterize commonly observed and distinctive conditions that give place to an expected behavior of 

some variable (like precipitation, wind, etc.). 

The use of WP on coastal engineering application is quite limited. Pringle at al. (2014) proposed a 

classification of the circulation patterns that drive wave climate in KwaZulu-Natal coasts, South Africa. 

Their approach results in a set of WP that explain the wave climate but there is no indication on how to 

apply them in order to characterize average or extreme wave conditions. Latter, Pringle et al. (2015) 

analyzed the link between WP and extreme wave events for the same region. Camus et al. (2014) 

proposed a statistical downscaling framework based on the use of weather-type classification methods, 

with a focus on average wave conditions (no extreme conditions). More recently, Rueda et al. (2016a, 

2016b) proposed a methodology for wave and storm surge extreme analysis based on weather-type 

classification methods. The methodology proposed by Rueda et al. (2016a, 2016b) is based on the use of 

a large number of weather patterns (approx. 100) to properly classify all daily maxima values. Even 
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though results obtained with this methodology are promising, in our opinion there are two issues that 

may prevent its widespread application in coastal engineering practice: first, the fact that it may result 

difficult to give physical interpretation to a large number of weather patterns; secondly, that the 

methodology focuses on modelling “daily extreme” conditions, something that departs from the common 

practice of modeling only “annual extreme” events (either through annual or monthly maxima or through 

peaks over threshold). 

In this paper, we propose a methodology for performing extreme waves analysis, aiming to ensure 

that extreme data is differentiated in homogenous populations and to facilitated the definition of the 

number of populations to be used in the analysis. The methodology is intended to be used in mid-

latitudes, where extreme wave conditions are generated by mid-latitude cyclones of synoptic scale. 

OBJECTIVES 

To develop and implement a methodology to the analysis of extreme wave conditions based on 

atmospheric circulation or weather pattern classification, that relies in the use of a reduced number of 

weather patterns and that focuses only on extreme events.  

To apply this methodology to a case study on the Uruguayan South Atlantic coast. 

METHODOLOGY 

The proposed methodology is based on an automatic classification of the extreme wave events by 

means of weather-patterns, taking into account the spatial and time evolution of the pressure and wind 

fields that were registered (or hindcasted) previously and simultaneously to the occurrence of the extreme 

event. In line with Caravaglia et al. (2010), whom proposed a similar methodology for analyzing extreme 

precipitation events in Southern France, the methodology comprises the following four steps (outlined 

in Fig. 1): 

1. Obtain a series of independent peak values from the whole series of wave height (e.g. from the hourly 

series). 

2.  Define homogeneous subsets using WP 

3. Fit an Extreme Value (EV) distribution to each subset. 

4. Reconstruct the EV distribution of the original set. 

Details of the four steps are given below.  

 

 

Figure 1. Outline of the proposed methodology. 

Step 1: Construction of a set of independent extreme value data 

The first step of the proposed methodology is divided in three sub-steps (see Fig. 2 for an outline of 

the three steps): 

a. First, use a moving window approach to find a set of peaks of the target variable (significant wave 

height in this case). 

b. Second, choose a threshold in order to reduce the length of the peaks data set and to retain only peak 

values with reasonable high value (this step follow the Bernardara et al. 2014 concept of the physical 

threshold). 

c. Third, construct the set covariates for each retained extreme event. The set of covariates is composed 

from both: state variables that complete the characterization of the sea state (e.g. Tp, Dir, S.L., etc.), 

and the simultaneous and lagged fields of the atmospheric variables used for the definition of the 

weather-patters (Mean Sea Level Pressure SLP, Surface Winds, etc.). 

The use of the moving windows results in a number of peaks per year just under what is obtained by 

dividing the length of the year by the width of the window, and warrants that the time between two 

consecutive peaks is equal or greater than the width of the window. The width of the window must be 

chosen by the analyst and is a free parameter of the methodology, as it is the “physical threshold”. Along 

this work we used a width of seven days and a physical threshold equal to the 90% quantile of the whole 

data set. 

(1) Construct a 
set of 
independent 
extreme data

(2) Define 
homogeneous 
subsets using WP

(3) Fit an EV 
distribution to 
each subset

(4) Reconstruct 
the EV 
distribution of the 
original set
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Step 2: Definition of homogenous subsets 

Our work hypothesis here is that homogenous subsets may be obtained by classifying the extreme 

value data set by means of weather patterns. Under this hypothesis, the problem of defining homogeneous 

subsets reduces to the classification of the data in accordance to a set of WP. 

There may be many ways for defining a set of WP. In this work, we chose to construct the set of WP 

as the centroids of the clusters obtained applying the Nucleated Agglomerative Clustering technic (see 

e.g. Wilks 2011), based on k-means and Euclidian distance. Once the methodology for constructing the 

clusters is chosen, it is necessary to define: 

a. The variable(s) to use in the cluster analysis. 

b. If the variable(s) should be normalized in some way or not (i.e. if WP will be constructed based on 

the original value of the atmospheric variables or only taking into account the “shape” of the 

atmospheric field). 

c. The spatial and time domain to be used in the cluster analysis. 

d. The number of clusters (WP) to use. 

In our case study, we have explored the use of the following atmospheric variables for the 

construction of the WP: Mean Sea Level Pressure, Mean Sea Level Pressure Anomaly and Surface Wind 

Speed. In addition, original and normalized values where used (normalization performed for each field, 

so only the shape of the fields is used in the clusters analysis). 

Spatial and time domain were chosen after analyzing linear correlation maps between peak values of 

the target variable (significant wave height at our study site) and wind fields, for several time lags. For 

the estimation of the linear correlation between a scalar (significant wave height) and a directional (wind 

speed) variable, the following equation was used: 

 

   


 ,,,0,, ,max tjimtji WH  (1) 

 

where ρi,j,t is linear correlation estimated for node (i,j) and time lag t, ρ(Hm0,Wi,j,t,θ) is linear correlation 

between significant wave height peaks series (Hm0) and wind speed series at node (i,j), with time lag t, 

projected in direction θ (Wi,j,t,θ). For estimation of the maximum linear correlation, projection are taken 

every 1o. 

Regarding the choose of the number of cluster to use in the analysis, we use the total variance (sum 

of intracluster variances) as a guide: while the increase in the number of cluster produce a significant 

reduction in the total variance, it is reasonable to enlarge the number of clusters in the analysis, otherwise 

it is not. This do not gives an objective criteria for choosing the number of cluster to use, but allows for 

the construction of variance reduction charts that orientate the decision; final decision corresponds to the 

analyst and must be made taking into account the resulting WP and its physical interpretation. The total 

variance is estimated as: 
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where g=1,…,G are the clusters (WP), i=1,…,Ng are the elements in cluster g, Xi are the individual 

atmospheric fields and Xg is the average atmospheric field of cluster g. 

Step 3: Fitting an EV distribution to each subset 

The set of peak values is divided in subsets, following the result of the cluster analysis. Each subset 

is assumed homogeneous; i.e. given that all data in a subset is generated by similar atmospheric 

circulation processes, it is assumed that all data comes from the same parent distribution. Under this 

hypothesis it is possible to applied extreme value theory and to fit an EV distribution to the peaks in each 

subset. 

In this work the peaks in each subset are fitted by a Generalized Pareto Distribution (GPD), following 

Solari et al. (2017) for the estimation of the threshold and L-Moments for the estimation of the parameters 

of the GPD (see Solari et al. 2017 for details). 
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Figure 2. Outline of step (1) of the proposed methodology: Construction of a set of independent extreme value 
data. 

 

Step 4: Reconstruct the EV distribution of the original data set from the EV distributions fitted 
to the subsets 

In order to obtain the EV distribution of the whole data set (omni-WP distribution, in analogy with 

the omnidirectional distribution term used in directional analysis), as well as its confidence intervals, we 

propose to use the Monte Carlo simulation method outlined in Fig. 3.  

The method is straightforward, with the only particularity of using a multivariate Poisson model for 

the simulation of the number of events per year that falls in each WP. Multivariate Poisson model is 

constructed using a Gaussian copula and marginal Poisson distributions. 

The parameters of the distributions that make up the model are resampled before each repetition Nr, 

in order to fully reproduce the uncertainty of the whole model. For this a bootstrapping approach is used. 

 

(a) 

(b) 

(c) 
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Figure 3. Outline of step (4) of the proposed methodology: Obtaining the distribution of the original set from 
the EV distributions fitted to the subsets. 

 

APPLICATION 

Case Study 

Our study case is a series of hindcasted wave parameters (Alonso et al. 2015) and sea levels in front 

of the Uruguayan South Atlantic coast, at a depth of approx. 20 m (see Fig. 4). The series comprised the 

period 1980-2010 for wave parameters and 1993-2010 for sea levels, with 3-hourly time step. Fields of 

SLP and wind at 10 m height are obtained from NCEP Climate Forecast System Reanalysis (Saha et al. 

2010). The zone is microtidal, so no distinction is made between astronomical tides and storm surges, 

and sea level is treated as a random variable. 

Following Methodology section, all significant wave height peaks are identify using a seven days 

moving window and only those over the 90% quantile of the whole data set are retained for the analysis. 

Using this filtered data set, the correlation maps shown in Fig. 5 are constructed. From these, a spetaial 

domain (45oW to 65oW, 25oS to 45oS) and time lags (0, 6 and 12 hours) are chosen.  

 

 

 
Figure 4. Location of the study case: hindcasted wave parameters and sea level in front of Uruguayan South  
Atlantic coast (violet square dot in the lower right panel). 
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Figure 5. Correlation between the series of significant wave heights peaks and surface wind speed, for different 
time lags. 

 

Results and Discussion 

Fig. 6 shows variance reduction charts (Eq.2), as percentage of total variance obtained with only one 

cluster, constructed using different atmospheric variables. Firstly, it is observed that all graphs are very 

similar, whether they are constructed using SLP, SLP anomaly or surface wind fields, and whether the 

original values of these variables are used or the normalized fields (field shapes). Accordingly, in the 

following, we work with the clusters obtained using surface wind fields without normalization (bottom 

left frame in Fig. 6), since this variable is the one that has a more direct relation with the target variable 

and, for our particular case study, with the sea level variations (see Santoro et al., 2013).  

From the variance reduction graph obtained with the wind fields (bottom left frame in Fig. 6) it is 

clear that separating the initial population into two clusters leads to a reduction of the total variance of 

approx. 25%, and when separating in three clusters an additional decrease of almost 10% is achieved. 

Increases in the number of clusters, until reaching values of 4 to 10, produce additional reductions of the 

total variance under 5% per additional cluster, and for a total number of clusters greater than 10, the 

reduction of the total variance per additional cluster is always under 1%. 

Fig. 7 and 8 show the WP that are obtained with two and three clusters respectively, along with the 

mean annual cycle of the number of events per WP. Fig. 9 shows the EV distributions obtained in both 

cases, along with scatter plots of covariables: significant wave height and mean direction (Dm-Hm0), 

significant wave height and sea level  (SL-Hm0) and deep water wave steepness and direction (Dm-s0) 

Firstly, it is observed that the proposed methodology result in clearly differentiated WP. In the case of 

two clusters (Fig. 7), WP#1 is characterized by a low pressure to the N of the study zone and a high 

pressure to the S, both traveling Eastward, while WP#2 is characterized by a larger low pressure to the 

SE of the study zone, traveling Eastward, and a high pressure to the W, coming from the SW. Both WP 

are repeated in the case of three clusters (see Fig. 8), and a new one shows up (WP#3) that is characterized 

by a low pressure to the E of the study zone and a high pressure that span from SW to W of the study 

zone.  
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Figure 6. Variance reduction charts. Each dot shows the reduction in the total variance produced by increasing 
the number of cluster by one, relative to the variance obtained with no clusters (i.e. the whole data set assigned 
to a single cluster). 

 

Regarding the quality of the fit of the GPD to the data, it is noted that a good fitting is obtained in all 

cases (see Fig. 9 top frames). In the case of two clusters (Fig. 9, top left frame), it is noted that both EV 

distributions are quite similar. However, in the case of three clusters (Fig. 9, top right frame) it is noted 

that WP#1 and WP#3 have the same trend, with values of WP#3 approx. 50 cm larger than values of 

WP#1, while WP#2 has a noticeable different trend, resulting in lower high return period quantiles than 

the others WPs.    

The effect of including a third WP is particularly noticeable in the scatter plots of the covariables 

(Fig. 9, all frames but the two on top). Whether two or three clusters are used, WP#2 (similar in both 

classifications) produces a clearly distinguishable clustering of covariates: mean direction between 140° 

and 160°, tending to 140° as Hm0 increases, sea level above average and approximately linear relationship 

between the deep water wave steepness and the mean direction (being refraction the possible link 

between them). In the case of two clusters, the data belonging to WP#1 do not present clear groupings in 

terms of covariates. On the contrary, in the case of three clusters, the data belonging to WP#1 and WP#3 

clearly differ in both the mean direction and the sea level with which they occur; i.e. although the GPD 

obtained with data of WP#1 and WP#3 are very similar, with WP#3 events being 50 cm larger than those 

of WP#1 for the same return period, the extreme events of WP#1 are associated with below-average sea 

level and ESE mean direction, while extreme events of WP#3 are associated with above-average sea 

level and SSE mean direction. 

At this point is interesting to note that the classification of the data that is obtained through WPS  can 

not be reproduced by a directional analysis. In this sense, doubts arise about the ability of directional 

analysis to produce a classification of data that results in homogeneous populations, at least in this case 

study; see e.g. the scatter plots of Dm-s0, where a directional classification would not be able to 

differentiate the behavior of WP#2. 

Table 1 shows, for the case of three WPs, the linear correlation between the number of events per 

year in the different WPs, and between the number of events per year and different climatic indexes, 

namely: Antartic Oscillation (AAO or SAM), El Niño (NINO 3.4) y Tropical South Atlantic Index 

(TSA). In the table, only statistically significant correlations are shown, using significance level α=0.05. 

It is noted that there is negative correlation between the number of events per year of WP#1 and WP#3, 

i.e. years with a number of events in WP#1 above the average tend to have a number of events in WP#3 

below average, and vice versa. The fact that we have correlation between the number of events per year 

in different WPs, highlights the importance of using a multivariate distribution for the simulation of the   
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Figure 7. Weather-patterns obtained with two clusters. Upper panels: average mean sea level pressure and 
surface wind fields for each pattern. Central panels: average MSLP anomaly for each pattern and arrows 
showing the average travel of lows and highs in 12 hours. Lower panel: annual cycle of the mean number of 
events per cluster. 

 

 
Figure 8. Weather-patterns obtained with three clusters. Upper panels: average mean sea level pressure and 
surface wind fields for each pattern. Central panels: average MSLP anomaly for each pattern and arrows 
showing the average travel of lows and highs in 12 hours. Lower panel: annual cycle of the mean number of 
events per cluster.  
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Figure 9. EV distribution and scatter plots of the covariates obtained with two WPs (left) and three WPs (right). 
Top frames: GPD fitted to data in each WP. Three lower frames: scatter plots of the covariates, with colors for 
differentiate each WP (same colors as top frames).   
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number of events per year when calculating the omni-WP distribution (a multivariate Possion distribution 

in this particular case). From Table 1 also arises that the only WP that have statistically significant linear 

correlation with the climatic indexes is WP#2, showing in this case that the number of events per year in 

WP#2 might be influenced by El Niño and TSA anomalies. Although not done here, these effects may 

be included in the simulation process outlines in Fig. 3 

Lastly, Fig. 10 shows the comparison of the “omni-WP” distribution obtained directly by fitting a 

GPD to the data and by following the methodology outlined in Fig. 3. It is noted that both distributions 

agree, with a difference of approx. 5% for the 100-years return period quantile, and that the width of the 

confidence intervals is similar in both cases (there is no increase nor reduction of the uncertainty when 

using the proposed, more complex, statistical model). Also in Fig. 10 (lower frame) is included the 

“omni-WP” distribution obtained using 20 WPs; it is noted that the obtained EV distribution is in 

agreement with the one obtained with no WPs and with the one obtained with three WPs, and that in 

spite of the significant increase in the complexity of the model, there is no significant widening of the 

confidence intervals. In this regards, the proposed methodology seems to be insensitive to the choose of 

the number of WP to use in the analysis. 

 
Table 1. Linear correlation between annual number of events in the different Weather 
Patterns, and between the annual number of event and different climate indexes. 

  WP#1 WP#2 WP#3 AAO Niño 3.4 TSA 

WP#1 1 --- -0.46 --- --- --- 
WP#2  1 --- --- 0.36 -0.45 
WP#3   1 --- --- --- 

 

CONCLUSIONS 

A methodology was introduces for performing EV analysis of met-ocean variables based on WP 

classification. The proposed methodology is in line with v in that is based on the same four basic steps, 

but differ in the ways this steps are implemented in practice. 

From applying the proposed methodology to a case study in the Uruguayan South Atlantic coast, it 

is concluded that: 

 The methodology seems to be able to identify homogeneous populations, not only in terms 

of the target variable whose extreme values are being analysed but also in terms of other 

covariables that are of utmost interest in coastal engineering 

 It also properly reproduce the “omni-WP” distribution of the data. In this regards, the 

methodology seems to be unsensitised to the number of WP chosen for the analysis, which 

is an advantage since the choose of the number a WP remains subjective. 

In addition, the proposed methodology provides a better insight of the physical processes that results 

in the observed extreme conditions and provides a way to reasonable generate combinations of the 

extreme variable and its covariables that might be use for design. 
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Figure 10. EV distribution of the whole peaks data set (“omni-WP” distribution) obtained by fitting a GPD to 
the original data (black dashed line and gray shadow) and from applying the simulation methodology outlined 
in Figure 3 (red continuous and dashed lines). Top panel: result obtained by using 3 WP. Low panel: result 
obtained by using 20 WP, along with the GPD fitted to the peaks in each WP. 
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