

WAVE RUN-UP SIMULATION ON REAL DIKES

WAVE RUN-UP SIMULATION ON REAL DIKES

- Jentsje van der Meer
- André van Hoven
- Gosse Jan Steendam Infram International b.v.
 - Van der Meer Consulting; UNESCO-IHE
 - Deltares

Contents

- Main features new wave run-up simulator
- Cumulative overload method
- Tests and Hydraulic measurements
- Grass pull tests
- Conclusions

Overtopping simulator: Pilot on Run-up

Results of pilot test on run-up

- Up-rushing wave simulated well
- Release of water after run-up needs to be taken care off
- Down-rush not simulated; too much water
- Large pressures on the side wall: too much water

Recommendation:

- New Wave Run-up Simulator
 - Slender less water
 - Quick release of water (higher velocities)

Features

- 2 m wide
- 2.8 m³ per m
- 7 m water column
- quick release drawer type valve
- max velocity 8 m/s
- max run-up height 4 m on
 1:3 slope (13 m along slope)

Cumulative overload method

$$\boldsymbol{D} = \sum_{i=1}^{N} (\alpha_1 U_i^2 - \alpha_2 U_c^2) \quad \text{for } \alpha_1 U_i^2 > \alpha_2 U_c^2 \quad [\text{m}^2/\text{s}^2]$$

- D = cumulative overload $[m^2/s^2]$
- N = number of overtopping waves [-]
 - = number of the overtopping wave [-]
- U_i = a characteristic value of the front velocity of the overtopping wave [m/s]
- U_c = critical velocity of the grass slope (=strength) [m/s]
- α_1 = influence factor on the velocity U_i by transitions or obstacles [-]
- α_2 = influence factor on the critical velocity U_c by transitions or obstacles [-]

Damage values

Start of damage	$D = 1000 \text{ m}^2/\text{s}^2$
Several open spots	$D = 4000 \text{ m}^2/\text{s}^2$
Failure	D = 7000 m²/s²

Results on U_c from overtopping tests

Grass on clay

Bare clay

•	Delfzijl	U _c = 8 m/s			
•	Boonweg	U _c = 8-9 m/s			
•	St Philipsland	U _c = 6 m/s	grass with open spots		
•	Afsluitdijk	U _c = 8 m/s			
•	Nijmegen	U _c = 6.5 m/s	river dike with open spots		
•	Millingen	U _c = 7 m/s	river dike		
Gra	ass on 100% sand				
•	Vechtdijk	U _c = 3.5 m/s			
Bad or no maintenance with relatively poor soil					
•	Tielrode, ruderal vegetation	U _c = 0 m/s			
•	Tholen, inadequate maintenance	U _c = 0 m/s			

Delfzijl, good quality erosion resistant bare clay U_c = 3-4 m/s

New classes (Dutch grass and situations!)

- Well maintained grass on clay
- Maintained grass, open spots, on clay
- Well maintained grass on sand
- Bad coverage, no maintenance, poor soil

 $U_c=8 \text{ m/s} \sigma=1.0 \text{ m/s}$

 $U_c=6 \text{ m/s} \sigma=0.75 \text{ m/s}$

 U_{c} =3,5 m/s σ =0,5 m/s

U_c=0 m/s

Just start of damage

Test 2

Hardly start of damage

Measurements of velocity and flow thickness

Simulated run-up front velocities

Cumulative overload

		U _c =7 m/s	U _c =8 m/s	U _c =9 m/s	
α1	α_2				
1.00	1.00	6773	0	0	
1.05	1.00	9440	869	0	
1.10	1.00	12710	2034	0	
1.15	1.00	16641	3228	0	
1.20	1.00	21285	4658	0	
1.30	1.00	32895	8558	428	
1.40	1.00	47842	14097	2756	
1.50	1.00	66014	21561	5317	
1.60	1.00	85969	31203	8844	

D=1000 m²/s² Limits: 500-4000 m²/s²

 $U_c = 8 \text{ m/s}$

with $a_1=1.1$ and $a_2=1.0$

Validation is thin as only based on start of damage!

Cumulative overload pilot test

D=4000-5000 m²/s²

Cumulative overload pilot test

		U _c =5 m/s	U _c =5 m/s U _c =6.5 m/s	
α1	α_2			
1.00	0.90	6226	944	0
1.05	0.90	7295	1274	33
1.10	0.90	8426	1663	93
1.15	0.90	9833	2114	157
1.20	0.90	11331	2626	237
1.30	0.90	14386 🔪	3826	476
1.40	0.90	17512	5254	838
1.50	0.90	20700	6892	1342

 $U_c = 6 \text{ m/s}$

with α_1 =1.2 and α_2 =0.9

Only one test, a pilot test

Grass pull tests

Strength of grass roots: grass sod strength puller

MSc Roel Bijlard: critical grass tensile stress

Critical mean grass normal stress, intact sod (Left point is 15x15 frame, right point is 20x20)

- Millingen, 2 sides cut
- Millingen, 4 sides cut
- Boonweg 1, 2 sides cu
- Boonweg 1, 4 sides cu
- Boonweg 2, 2 sides cu
- Boonweg 2, 4 sides cut
- Boonweg 3, 2 sides cu
- Boonweg 3, 4 sides cu

Boonweg 4, 2 sides cut

Boonweg 4, 4 sides cut

Table 1 - Critical velocity per location estimated from the sod pulling tests (calculated values) and wave overtopping simulator tests (determined values)

les cut		Critical grass tensile stress [N/cm2]			ess [N/cm2] Critical Velocity [m/s]		
es cut	Location	μ	σ	2.5 % limit	Calculated	Determined	Difference
	Millingen	1,18	0,27	0,65	7,23	7	3%
les cut	Boonweg 1	1,28	0,10	1,08	9,33	8 - 9.5	2 - 16%
les cut	Boonweg 2	1,37	0,14	1,10	9,38	8 - 9.5	1 - 17%
les cut	Boonweg 3	1,10	0,17	0,77	7,85	8	-2%
les cut	Boonweg 4	1,10	0,14	0,83	8,14	8	2%

Conclusions

- We got a very nice working wave run-up simulator;
- The grass cover was strong and transitions not significant;
- Only the stage of start of damage was reached, a small basis for validation;
- The cumulative overload method, developed for wave overtopping seems to work for wave run-up. But validation is not conclusive;
- More tests are needed, preferably on a structure where failure of the grass cover is reached;

Grass pull tests are a promising technique

