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ANALYSIS OF FLUID FLOW IMPACT OSCILLATORY PRESSURES WITH AIR 
ENTRAPMENT AT STRUCTURES 

Robert Mayon1* Zoheir Sabeur2 Mingyi Tan3 and Kamal Djidjeli4 

Hydrodynamic wave loading at coastal structures is a complex phenomenon to quantify. The chaotic nature of the fluid 

flow field as waves break against such structures has presented many challenges to Scientists and Engineers for the 

design of coastal defences. The provision of installations such as breakwaters to resist wave loading and protect coastal 

areas has evolved predominantly through empirical and experimental observations. This is due to the challenging 

understanding and quantification of wave impact energy transfer processes with air entrainment at these structures. This 

paper presents a numerical investigation on wave loading at porous formations including the effects of air entrapment. 

Porous morphologies generated from cubic packed spheres with varying characteristics representing a breakwater 

structure are incorporated into the numerical model at the impact interface and the effect on the pressure field is 

investigated as the wave breaks. We focus on analysing the impulse impact pressure as a surging flow front impacts a 

porous wall. Thereafter we investigate the multi-modal oscillatory wave impact pressure signals which result from a 

transient plunging breaker wave impinging upon a modelled porous coastal protective structure. The high frequency 

oscillatory pressure effects resulting from air entrapment are clearly observed in the simulations. A frequency domain 

analysis of the impact pressure responses is undertaken. We show that the structural morphology of the porous assembly 

influences the pressure response signal recorded during the impact event.  The findings provide good confidence on the 

robustness of our numerical model particularly for investigating the air bubbles formation and their mechanics at impact 

with porous walls. 

Keywords: Porous structures; fluid structure interaction; compressible flow; OpenFOAM 

INTRODUCTION  

Severe damage can be inflicted on coastal defence structures as a result of high intensity wave 

forces. Laboratory experiments have previously been performed to gain an understanding of the physical 

processes which occur at the wave impact interface e.g. (Topliss et al., 1993),  (Bullock et al., 2006), 

(Bullock et al., 2007), (Bredmose et al., 2009). However the validation of these wave impact pressure 

response results has proven to be very difficult because of the highly nonlinear, transient nature of the 

wave breaking process  (Chan and Melville, 1988).  

The progressive damage sustained by coastal defences may be attributed to their continuous 

exposure to transient wave impact pressures. At the present time these forces are not fully understood 

and the long term durability of coastal defences is difficult to determine (Oumeraci et al., 1993), 

(Wemmenhove et al., 2015), (Alagan Chella et al., 2015). In addition to these short duration impulse 

impact pressures, resonant oscillatory pressure signals have been observed in many experimental studies 

(Bagnold, 1939), (Hattori et al., 1994), (Sabeur et al., 1998), (Peregrine, 2003), (Stagonas et al., 2016). 

These oscillations manifest themselves subsequent to the initial wave impact with solid or porous walls 

and may be a source of much damage and deterioration to the structural integrity of coastal defences.  

Researchers have speculated as to the source of the observed oscillations within the pressure response 

signal (Peregrine, 2003).  

Experimental work has shown that incident waves on vertical structures can produce impulse 

pressures which greatly exceed magnitudes of the typical pressures that are expected when employing 

shallow water wave theory methods for analysis (Peregrine, 2003). The magnitude of these impulse 

pressures can commonly exceed: 

10𝜌𝑔(ℎ + 𝐻) (1) 

 Where H is the wave height, h is the water depth, 𝜌 the water density and 𝑔 the acceleration due to 

gravity. These higher magnitude impulse pressures have been attributed to a phenomenon often termed 

as the wave ‘flip-through’ effect, (Peregrine, 2003). However, additional highly destructive oscillatory 

pressure effects have been observed in experimental studies, most noticeably when air bubbles are 
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entrained at impact. In this instance, the entrapped air bubbles will compress and dilate with a range of 

specific oscillatory frequencies. Further, and according to earlier theoretical, (Minnaert, 1933) and 

experimental studies, (Hattori et al., 1994), the frequency range with which these bubbles oscillate will 

be dependent on the size of the entrained air void during their formation. The authors of this study have 

also observed these effects in previous numerical simulations, see e.g. (Mayon et al., 2016).   

In this work we analyse the impact of a solitary wave with a porous interface while employing a 

CFD approach. First we briefly introduce the theory for modelling free surface fluid flow; and the 

numerical methods to simulate wave impact at porous structures. We also introduce theories and 

experiments from the literature which show the relationships between formed sizes of air bubbles in fluid 

flows and their typical resonance frequencies of oscillation. We investigate 3 dimensional numerical 

dam-break flow simulations with impact at varying morphology porous vertical wall interfaces. The 

numerical model is capable of capturing the compressible effects of the air phase during bubble 

formation.   

FREE SURFACE FLOW AND BUBBLE OSCILLATION THEORIES  

Numerical Methods 

The numerical simulations were preformed using the finite volume technique based open source 

CFD code OpenFOAM, (The openFOAM Foundation, 2013). This software is compiled as a collection 

of C++ libraries with dedicated pre-programmed solvers which can be used to model various fluid flow 

simulation scenarios. In this study, the compressibleInterFoam solver was used to examine the effects of 

air entrapment in the fluid phase during wave breaking. This solver uses the phase fraction based Volume 

of Fluid method (VOF), (Hirt and Nichols, 1981), to capture and represent the interface between the two 

fluids. 

Volume of fluid method 

The interaction of the individual fluid phase constituents in the model is important as the pressure 

transfer across the free surface boundary which defines an entrained air bubble is central to this study. In 

the volume of fluid method a function, 𝛼(𝑥, 𝑦, 𝑡), is introduced at each grid cell in the model domain. 

The value of this function is defined as unity at any cell which is fully occupied by the fluid; and zero at 

any cell completely devoid of fluid. Cells with intermediate values may contain a droplet, a bubble or 

are located such that the interface between the two fluids intersects that cell. In the VOF method, the 

temporal evolution of the phase fraction function and thus the advection of the flow in two dimensional 

space is governed by the following transport equation: 

𝜕𝛼

𝜕𝑡
+ 𝑢

𝜕𝛼

𝜕𝑥
+ 𝑣

𝜕𝛼

𝜕𝑦
= 0 (2) 

Where the phase volume fraction 𝛼 ∈ [0, 1], and u and 𝑣 are the fluid velocities in the x and y 

direction respectively. By calculating the derivatives of the 𝛼 function at each cell boundary the free 

surface normal can be established, (Sabeur et al., 1995). The normal direction to the free surface is then 

the direction in which the 𝛼 function varies most rapidly (i.e.𝛻𝛼). From the value of the 𝛼 function and 

the direction of the normal to the fluid interface, a line cutting the cell can be drawn which represents the 

free surface boundary. 

Compressible model governing equations 

The conservation of mass equation for an incompressible fluid is defined as follows: 

∇ ∙ 𝑼 =  0 (3) 

Using Equation (3) the two phase conservation of mass equation for the volume fraction 𝛼 ∈ [0, 1] can 

be represented as: 

𝜕𝛼

𝜕𝑡
+ ∇ ∙ 𝑼𝛼 + ∇ ∙ [𝑼𝑐𝛼(1 − 𝛼)] = 0 (4) 

Where U is the fluid velocity vector, and Uc is the artificial compression velocity vector given by     

𝑼𝑐 = 𝑼𝛼1 − 𝑼𝛼2. The final term on the left hand side ensures a sharp interface is maintained between 

the fluid phases (Berberović et al., 2009). The momentum conservation equation is formulated by 

summing the averaged fluid properties according to their constituent proportion in the boundary cell. For 

a two phase flow, density 𝜌 in the cells is given by: 
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𝜌 = ∑ 𝑟𝛼

2

𝛼=1

𝜌𝛼 (5) 

Where 𝑟𝛼 is the volumetric fraction of each constituent fluid in the free surface boundary cell. A 

single momentum conservation equation for an incompressible fluid can then be defined for the 

homogeneous mixture as: 

𝜕(𝜌𝑼)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑼𝑼) = −𝛻𝑝ℎ + 𝛻 ∙ 𝜇(𝛻𝑼 + 𝛻𝑼𝑇) + 𝑭𝑠 + 𝜌𝒇𝒊 (6) 

Where 𝜌 is given in Equation (5), 𝑝ℎ is the hydrostatic pressure, 𝜇 is the fluid viscosity and fi is the 

gravitational force. The term Fs represents the surface tension force and is calculated from 𝑭𝑠= 𝜎𝜅∇𝛼, 

where 𝜎 is the interfacial tension and the interface curvature is given by 𝜅= ∇∙(∇𝛼/|∇𝛼|). 

 To include the effects of compressibility within the model an Equation of State (EOS) must be 

defined for each phase. For the air phase, the ideal gas EOS is specified as follows: 

𝜌𝑎 = 𝑝
1

𝑅𝑎𝑇
 (7) 

Where 𝜌𝑎 is the air density, 𝑅𝑎 is the specific gas constant for air, T is the air temperature and p is 

the pressure. For the water phase the perfect fluid EOS is defined as: 

𝜌𝑤 = 𝑝
1

𝑅𝑊𝑇
+ 𝜌𝑊0 (8) 

Where 𝜌𝑊0 represents the density of water at atmospheric pressure conditions. To allow for air to 

be modelled as a compressible medium an additional term must be incorporated into Equation (4):  

𝜕𝛼

𝜕𝑡
+ ∇ ∙ 𝑼𝛼 + ∇ ∙ 𝑼𝑐𝛼(1 − 𝛼) = −

𝛼

𝜌𝑊

𝐷𝜌𝑊

𝐷𝑡
 (9) 

The Euler compressible mass conservation equation is defined as: 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑼) = 0 (10) 

The transport equation for the temperature term is derived from the energy conservation equation, 

(Martínez Ferrer et al., 2016), and is calculated accordingly using equation (11) below: 

𝜕𝜌𝑇

𝜕𝑡
+ ∇ ∙ (𝜌𝑼𝑇) − ∆(𝜇𝑇) = − (

𝛼

𝐶𝑊

+
1 − 𝛼

𝐶𝑎

) (
𝜕𝜌𝑘

𝜕𝑡
+ ∇ ∙ (𝜌𝑼𝑘) + ∇. (𝑼𝑝)) (11) 

𝐶W and 𝐶𝑎 are the specific heat capacities for water and air respectively, while k is the specific 

kinetic energy. A flow field solution can be obtained by applying the PIMPLE algorithm which is a 

pressure-velocity coupling approach derived through combining the PISO and SIMPLE algorithms. 

Resonant oscillation Frequency of a single entrained air bubble 

The behaviour of a single air bubble which is entrained within an infinite water domain has 

previously been studied by Minnaert (1933). An analytic expression describing the resonant frequency 

of a spherical bubble which is subjected to an external impulse force is given by: 

𝑓 =  
1

2𝜋𝑟
√(

3𝛾𝑝

𝜌
) (12) 

Where r is the bubble radius, 𝛾 is the polytrophic coefficient of the fluid, p is the hydrostatic pressure 

at the depth which the bubble is located in the liquid and 𝜌 is the liquid density. 

Hattori et al. (1994), have conducted experiments to investigate the influence of air entrainment on 

impact pressures from a wave impinging on a vertical solid wall. By varying the wall location relative to 

the breaking wave they were able to capture and analyse the effects of 4 distinct geometries of the 

breaking wave. High speed video recording at the impact interface was captured, from which still images 

were provided. From their experimental analysis the oscillating frequency of an entrained bubble is given 

by: 
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𝑓𝑎𝑝  =  180(2𝑟)−0.5 (13) 

3 DIMENSIONAL POROUS IMPACT INTERFACE SIMULATION 

There are two main approaches to modelling fluid transport in porous media. The first approach is 

the macroscopic continuum method wherein the flow is modelled according to the Navier-Stokes 

equations with an additional Darcy (or Darcy-Forcheimer) term incorporated into the momentum 

equation in the region where the porous structure is located (Higuera et al., 2014). In this method the 

physics of the flow through the porous medium is governed by phase quantities averaged over control 

volumes (also known as Representative Elementary Volumes).  

The second approach to modelling fluid flow through porous media is a direct modelling approach 

wherein each phases is explicitly represented and the flow through the porous interstices is modelled 

explicitly using the Navier-Stokes equations. Other methods for modelling flow in porous media include 

the smoothed particle hydrodynamic (SPH) method and lattice Boltzmann methods. In this study the 

direct modelling approach is employed. 

For this investigation a number of porous geometries were generated and incorporated into the 

OpenFOAM CFD model. Various parameters were used to classify the porous structure according to its 

morphology. These parameters include porosity, specific surface area, tortuosity and permeability. 

Porous structure classification 

Porosity 

A porous sample in in its most basic definition is a material composed of a certain solid volume 

which contains a proportion of distributed void space. These voids can be occupied by one or more fluids 

in either a liquid phase, a gaseous phase or both. Thus porosity or the purpose of this investigation is 

defined as the fraction of the bulk volume of the sample which is occupied by pore or void space. Civan 

(2011) provides a mathematical definition of porosity as: 

Φ =
∑ ∆𝑉𝑗𝑗≠𝑠

∆𝑉𝑏

 (14) 

Where ∆𝑉𝑏is the bulk volume of the porous sample or the total volume occupied by all phases, ∆𝑉𝑗 

is the volume occupied by the jth phase and s denotes the sum of the solid phases forming the porous 

matrix.  

Bear (1988) provides a more onerous characterisation of a porous media which suggests that the 

multiphase matrix must satisfy certain conditions such as level of void space interconnectedness, lower 

bound limits on interstitial surface areas and uniformity in phase distribution. However the definition of 

a porous medium is still couched in ambiguity as there is no complete consensus on limits for any of the 

above conditions.   

Specific surface area 

The specific surface area of a porous sample is defined as the interstitial void (or solid) surface area 

per unit bulk volume having a reciprocal length dimension. In molecular science specific surface area 

greatly influences adsorption rates and reactivity processes. However on a macroscale scale it can also 

be used to characterise the morphology of the porous structure. A higher specific surface implies a more 

complex porous media. Additionally a high specific surface area may also decelerate the flow of fluid 

through the porous structure as the wall shear stress will have a more pronounced effect due to a higher 

phase interfacial area. 

Tortuosity 

Tortuosity is an inherent characteristic of a porous media morphology which in general terms can 

be described as a ratio of the distance traversed by a fluid element between two fixed points to the straight 

line distance between those two points as shown in Figure 1(Brus et al., 2014). Tortuosity can be 

calculated from: 

𝜏 =
𝐿𝑒

𝐿𝑠

≥ 1 (15) 

Where Ls and Le are shown on Figure 1. 

Whilst there has been a large body of academic research presented on the subject of tortuosity, there 

is no general agreement for a single precise definition of tortuosity and to date a number of different 

measurements of tortuosity have been advanced for different applications. For example Ghanbarian et 
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al. (2013) in their review paper describe geometric tortuosity, hydraulic tortuosity, electrical tortuosity 

and diffusive tortuosity.  

The difficulty in achieving a unanimous characterisation for tortuosity may be twofold; with the 

exception of very few materials, e.g. metals, dense rocks and some plastics (Dullien, 1992), most material 

exhibit porous behaviour to varying degrees at multiscale levels from microscopic through to 

macroscopic scale. The parameters which govern the tortuosity may vary dramatically within a single 

material at different scale lengths thus effecting the observed tortuous transport path length. Therefore 

depending on which scale of analysis is being considered, different fluid behavioural effects may 

dominate the calculated tortuosity ratio. 

When analysing the flow of fluid through porous media either the geometric or hydraulic tortuosity 

is usually considered. Figure 2, Ghanbarian et al. (2013) presents a comparison of a hydraulic tortuous 

flow path and a geometric tortuous flow path. At the microscale multiphase interfacial parameters such 

as capillary pressures, surface tension effects and wall friction may all significantly influence the flow 

rate through a porous structure, however at larger scale lengths these effects may not warrant 

consideration due to the bulk of the flow being conveyed through larger fissures where wall friction, 

capillary and free surface effects are not the limiting constraints on the flow rate. Then, it may be more 

appropriate to use hydraulic tortuosity for microscale analyses and geometrical tortuosity at larger scales   

 
Figure 1 Tortuosity (Brus et al., 2014) 

The structure of porous materials can take many forms, and the tortuous paths can vary from being 

comparatively simple to being highly complicated. For instance the porous structure of a natural material 

such as wood can be somewhat homogenous and anisotropic and thus in this case the tortuosity can be 

relatively simply described by reducing it to a model consisting of a bundle of unidirectional capillary 

tubes. This limiting case of a bundle of parallel, non-interconnected tubes longitudinally orientated in the 

direction of macroscopic flow, traversing the full thickness, Ls, of the sample presents little resistance to 

the flow (neglecting frictional effects at the tube wall). Then, a flow streamline, Le, tracing the path of 

the fluid will have a length similar to the thickness of the sample, i.e. the tortuosity factor can be 

calculated for Equation 15 and will have a value of unity.  

In contrast a material may be much more complex and disordered having multidirectional 

interweaving fibrous filaments as evidenced within some filter materials or in paper products. Then, the 

structural morphology is much more difficult to define and the parameters which can be used to describe 

the tortuous nature of interconnecting porous voids can be very difficult to determine from the physical 

sample. In this study the void throats between the solid particles are relatively narrow such that the flow 

streamlines are seen to be influenced by the surface of the solid phase material in the CFD model. The 

hydraulic tortuosity is therefore adopted in this investigation. 

 
 a. Hydraulic tortuous path         b. Geometric tortuous path 

Figure 2 Comparison between hydraulic tortuosity and geometric tortuosity, 
 Ghanbarian et al. (2013)   

Fluid flow through a porous medium is influenced by both the amount and morphology of the void 

(pore) space (Vallabh et al., 2010). While the amount of void space is easily quantified by measurement 

of porosity, the characterisation of the distribution of the void space structure is often very difficult, 

especially in complex, irregular porous media (Vallabh et al., 2010). In the case whereby the pore 

structure is more intricate with many converging and diverging channels the streamline path may not 
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follow the liner shortest distance between the bounding surfaces of the sample. Rather, the streamlines 

may be forced to follow a sinuous winding path determined by the morphology of the solid (or void) 

phase. Then the tortuosity factor must be greater than unity. This increases the time taken for the fluid to 

permeate through the porous media and results in an associated higher resistance to the flow. This is 

manifest in a lower permeability value for the sample. As the value of tortuosity approaches infinity this 

represents an internal pore structure (and geometric morphology) of increasing complexity.  Furthermore, 

a thorough analysis and understanding of tortuous paths within a sample presents one with a means to 

quantify the complexity and also the permeability of the sample. 

Simulated porous structure morphology 

In an earlier study a thorough analysis of wave impacts with a solid interface were performed. A 

range of equation discretisation schemes were employed and the oscillatory behaviour of the resultant 

bubble(s) were analysed in depth, (Mayon et al., 2016).   

In this study wave impact at a single porous morphology with varying component sphere sizes are 

investigated. The geometry consists of a number of spheres on a regular cubic lattice layout. The porous 

structures were generated using a short LISP file and the CAD software package AutoCAD Mechanical. 

The geometries were then exported as stereolithographic files. The OpenFOAM mesh generation utility 

snappyHexMesh was then used to construct an accurate 3-dimensional split-hex mesh which defined the 

void geometry within the porous structure.  

In order to establish the exclusive influence of the various porous morphology characteristics; 

surface area, porosity, tortuosity, permeability, etc. on the wave impact pressure signal a range of 

simulations were conducted whilst varying the component sphere size. Each of these porous structures 

have mono-sized spheres arranged on a distinct regular geometric lattices. This work presented in this 

study will be restricted a single regular lattice layout; simple cubic packing. The following subsections 

describe the porous structure and how they are generated. 

Simple cubic packing 

This spherical based structure consists of a mono-sized, close packed sphere-swarm arranged on a 

cubic lattice layout. With the exception of the outermost spheres on the boundary of the lattice (and 

assuming that there is a minimum of 27 spheres composing the structure), each sphere is in direct contact 

with its 6 neighbours, this is also termed the coordination number.  This sphere packing arrangement is 

also known as simple close cubic packing (see Figure 3).  

Assuming the bounding box enclosing the lattice structure maintains a fixed volume and the spheres 

are tightly packed, then the porosity of the assembly is constant for any range of component sphere size. 

Thus due to the regular composition of the structure the porosity is maintained with a value of 0.476 for 

all simulations with the elemental spheres in a simple cubic packing system. The constant porosity is 

obvious from Figure 3. This allows one to investigate the influence of porous matrix component grain 

size on the flow field while maintaining the structure’s overall density at a constant value. In this study 

a bounding cube of 100mm length was defined and 4 geometries based on packed sphere sizes of 25mm 

diameter, 12.5mm diameter, 6.25mm diameter and 3.125mm diameter were investigated.  

Furthermore, the theoretical geometric tortuosity of the matrix which is an inherent characteristic 

of the porous structure and is determined by its geometrical composition also retains a constant value 

and is calculated according to Equation 15. 

However if hydraulic tortuosity is employed then it can be easily shown mathematically that the 

tortuosity parallel to the flow direction varies from a minimum value of 𝜏 = 1.0 to a maximum value of 

tortuosity 𝜏 = 1.57 (irrespective of the elemental sphere diameter), assuming the flow streamline remains 

within the x-y plane of the fluid flow direction and is coincident with the sphere surfaces. The value of 

𝜏 = 1.0 is obtained if one considers a streamline which is located at maximum distance from the surface 

of the spheres, and 𝜏 = 1.57 is obtained for a streamline which follows the contour of the spheres surface 

and assuming the streamline stays in the x-y plane (see Figure 3). 

 
Figure 3: Simple cubic packing arrangement for varying sphere sizes 

Flow 

direction 

z 

y 

x 
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Table 1. Simple cubic packing structure characteristics* 

Sphere diameter 25mm 12.5 mm 6.25 mm 3.125 mm 

Porosity 47.64 % 47.64 % 47.64 % 47.64 % 

# of spheres 64 512 4,096 32,768 

Surface area 125,662mm2 251,279mm2 502,558mm2 1,005,116mm2 

Specific surface area 0.1257 mm-1 0.2513 mm-1 0.5026 mm-1 1.0051 mm-1 

Coordination number 6 6 6 6 

In-plane (analytic) 
Tortuosity 

min max min max min max min max 

1 1.57 1 1.57 1 1.57 1 1.57 

*values calculated assuming spheres packed into cube of side 100mm  

SIMULATION SETUP 

The simulation set-up follows an earlier study presented in Mayon et al. (2016). Model verification 

and validation data may also be found in Mayon et al. (2016). The geometry is in the configuration of a 

dam break flow test case as shown on Figure 4 below. The numerical wave tank is 0.4m long and 0.2m 

high and 0.05m deep. The tank contains a column of water of width 0.05715m, height 0.01143m and 

depth 0.05m at the left hand side. A no-slip boundary condition is prescribed at the tank base and at 

vertical walls at x = 0, z = 0 and z = 0.05. As the top of the tank is considered to be open to the atmosphere, 

the inflow and outflow of fluid is permitted across this boundary. Thus, at this surface a combination of 

boundary conditions are specified for the pressure and velocity terms of the fluid flow governing 

equations to model inflow and outflow behaviour whilst maintaining the PIMPLE algorithm stability. 

The numerical value of the fixedValue boundary condition is set to atmospheric pressure conditions 

(101 kPa) across the surface which represents the top of the numerical tank. The porous morphologies 

were incorporated into the model at the right hand side of the domain. Additionally at the right hand side 

surface (at x = 0.4) the boundary condition applied permits the outflow of fluid from the domain. The 

pressure signals are sampled at mid height the face of the bottom sphere forming the porous matrix 

indicated by point P1 on Figure 4 below.  

 

 
 

Figure 4: Section through simulation setup (sphere diameter 12.5mm) 

As the flow simulation progresses, the water column collapses and the flow front advances towards 

the right hand side (RHS) of the numerical tank. The surging flow front impacts the porous structure and 

is forced vertically upwards through the formation of a thin jet. Figure 5 (a) presents the 𝛼 function as 

the flow front impacts the wall. This initial impact produces the first pressure peak shown on Figure 7 at 

time t = 0.208. As the vertical jet collapses (Figure 5(c)) it forms a plunging breaker type wave and 

converges with the fluid below, a bubble is entrained in the flow. For the 3.125mm diameter cubic packed 

sphere structure this occurs at t = 0.515 seconds (Figure 5(d)) and yields the first oscillatory cycle local 

maximum pressure shown on Figure 8.  

P1 
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SIMULATION RESULTS 

Simulation free surface profile 

      
(a) Time = 0.208 sec                                                                                                          (b)      Time = 0.276 sec        

 

             
(c) Time = 0.450 sec                                                                                                   (d)   Time = 0.515 sec        

Figure 5: Free surface flow profile section (sphere diameter 3.125mm) 
 
 

Table 2. Simple cubic packing simulation results 

Spheres Diameter 25mm 12.5 mm 6.25 mm 3.125 mm 

Outflow flow rate  
(end time of simulation) 

506,960 
mm3/sec 

365,680 
mm3/sec 

163,450 
mm3/sec 

70,100 
mm3/sec 

Bubble Oscillation Frequency 298.5 Hz 224Hz 199Hz 174Hz 

Bubble Oscillation Amplitude 51 300 557.6 580 

Entrained bubble radius     
(analytic prediction) 

10.9 mm 14.6mm 16.4mm 18.8mm 

Observed Simulation  
Bubble Volume 

12,284 mm3 12,190 mm3 16,423 mm3 16,396 mm3 

Bubble Surface Area 3,930 mm2 3,800 mm2 4,294 mm2 3,612 mm2 

Bubble (Cylindrical) Length 50 mm 50 mm 50 mm 50 mm 

Bubble Sphericity* 0.6551 0.6741 0.7227 0.8642 

Equivalent entrained bubble 
radius (simulation)  

14.31 14.27 15.77 12.51 

*calculated following Wadell (1935) 
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Pressure signal analyses 

Figure 6 below shows the pressure signal for each of the simulations with the varying component 

sphere diameter porous structures. Also included on the figure is the pressure signal for a wave impact 

with a solid wall computed using a similar simulation setup. The solid wall impact results are taken from 

the analysis of  Mayon et al. (2016).  

 
Figure 6: Pressure signals recorded at face of porous structures 

 

Figure 7(a) show the pressure response recorded as the surging flow front impacts the solid and 

porous walls. There is a slight delay in the impact time for larger spheres as the wave front initially hits 

the these spheres at a position below P1 (see Figure 4) before flowing vertically up the face of the sphere 

thereby inducing a pressure increase. The porous structures composed of the larger spheres also exhibit 

extended impact durations, also termed the rise time, see e.g. (Peregrine, 2003), (Mayon et al., 2016). 

Whilst the porosity of all the structures is identical the void channels between the larger spheres have a 

larger surface area opening, this allows the fluid to penetrate these porous structures more easily than the 

structure with more numerous but smaller surface area openings. This may be explained through the 

higher wall friction due to the greater specific surface area for the porous assemblages comprising of 

smaller spheres. The result of this longer rise time is a softer, less impulsive impact for the larger sphere 

structure. The higher flow rate through the larger sphere porous network supports this assertion.   

Figure 7(b) shows the relationship between the sphere diameter and the magnitude of the impulse 

force. The magnitude of the impulse decreases monotonically as the component sphere diameter 

increases. 

 
(a) Impact pressure impulse                       (b)   Sphere diameter Vs impact pressure magnitude 

Figure 7: Initial impulse impact pressure 
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Figure 8(a) displays a plot of the pressure signal for the various simulations as the formed vertical 

jet collapses and converges with the fluid in the bed of the domain. As the jet collapses a plunging breaker 

is formed as shown in Figure 5(d) and a bubble is entrained which compresses and dilates in a resonant 

oscillatory manner yielding the cyclic pressure response. As the air entrained within the bubble is 

compressible, a larger bubble will resonate with a lower frequency as the amount by which it can 

compress and dilate is dependent upon its volume. The larger bubbles can compress to a greater extent 

relative to smaller bubbles, thus the amplitude of the oscillatory signal will be greater for these larger 

bubbles.  

T he pressure data is converted from the time domain to the frequency domain by preforming a 

Fourier Transform. Figure 8(b) shows the results of transform and the simulation frequencies and 

amplitudes are recorded in Table 2. The signal frequencies are plotted against the sphere diameters on 

Figure 9(a) and the signal amplitudes versus the sphere diameters on Figure 9(b).  

 The frequency of oscillation increases monotonically as the component sphere diameter increases. 

Additionally the amplitude of oscillation decreases monotonically. The pressure oscillation frequencies 

and amplitudes are directly related to the entrained bubble size. Nevertheless, as shown in Table 2 the 

observed simulation bubble volumes do not follow a trend whereby they increase as the sphere diameter 

decreases. This may be explained by a number of possibilities. As previously mentioned the smaller 

sphere based structure allows less fluid to penetrate. Conversely this means that more fluid will be 

rejected from the face of the porous structure. This in turn will cause to the thicker jet to form. When this 

jet collapses it falls further away from the wall entraining a larger bubble. This larger bubble will have a 

lower pressure oscillation frequency and higher amplitude of pressure oscillation. However as shown on 

Figure 5(c) some of the fluid may collapse on the top of the porous structure and permeate down through 

the voids.    

Another reason the discrepancy in oscillating frequency and amplitude may be due to the bubble 

shape.  Previous researchers have put forward contrasting opinions on the influence of sphericity on the 

oscillation frequency of a bubble. Strasberg (1953) states that the oscillation frequency of non-spherical 

bubbles varies only slightly from the oscillation frequency of spherical bubbles, however both Weston (,  

and Feuillade and Werby (1994) in their  studies on non-spherical bubbles (oblate and prolate spheroids) 

have shown the frequency of oscillation may increase by up to 40% depending on the degree of non-

sphericity. Thus for similar volume bubbles their shape may have a large influence on the observed 

results. Figure 10 shows that there is a large variation in the shape of the bubbles generated in the different 

simulations. Table 2 records the bubble sphericity for each of the simulations. this is calculated from 

Equation 16 Wadell (1935): 

Ψ =  
𝜋

1
3(6𝑉𝑣)

2
3

𝐴𝑣

 (16) 

Where Vv and  Av are the volume of the bubble and the surface area of the bubble respectively. 

   

  
     (a) Time domain results                                                                                                                                (b)   Frequency domain results  

Figure 8: Simulation oscillatory pressure responses 
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Finally Figure 11(a-d) shows spatial and temporal pressure signal attenuations within the porous media 

for each of the porous structures.  The oscillatory pressures attenuate more rapidly within the porous 

structures with the larger component sphere sizes. As the porous structures composed of the smaller 

component spheres exhibit a lower porosity the fluid trapped within transfers the oscillatory pressures 

through the porous structure more readily.  

           
(a) Time domain results                                                                                                                                     (b)   Frequency domain results  

Figure 9: Sphere diameters Vs FFT results 
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    (c)   Entrained Bubble geometry from                                 (d)   Entrained Bubble geometry from 
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Figure 10: Entrained Bubble Geometries 
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Figure 11(d) 

Figure 11: Spatio-temporal pressure attenuation for each porous structure simulation 
 

CONCLUSIONS AND FUTURE DEVELOPMENTS 

Wave impact pressures at a range of varying morphology porous structures have been investigated. 

A thorough parameterisation of the porous media has been presented. The influence of the porous 

structure on the pressure signal resulting from a surging flow front impact has first been analysed. We 

clearly show that a porous geometry consisting of larger elemental components reduces the magnitude 

of the impact pressure impulse but results in a longer pressure rise time. We next investigated the effect 

of varying porous morphology structures on the pressure signal resulting from a plunging breaker wave 

impact. Again we demonstrated that a structure with higher specific surface area yielded higher frequency 

pressure oscillation signals but having a lower magnitude. We also demonstrated that the component 

sphere size in porous structure influences the shape and volume of the entrained air bubble. The outflow 

rate (directly related to permeability) has also been shown to be influenced by the specific surface area 

of the porous geometry. Finally we have shown that the oscillatory pressure signal persists further into 

the porous structure comprised of the smaller sphere sizes. 

Further investigations are in progress to determine the influence of various sphere packing systems 

and different, more complex, porous morphologies (fibrous, granular etc.) on bubble entrapment during 

wave impact and the resultant oscillatory pressure signals.   
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