

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 - August 3, 2018

The State of the Art and Science of Coastal Engineering

Interconnectivities between Shoreline Type and Structural Vulnerability

United States Naval Academy

Tori Tomiczek, PhD Kelsi Furman, PhD Student Northeastern University

Brittany Webbmartin, ENS Kiera O'Donnell, PhD Student United States Naval Academy Northeastern University

Steven Scyphers, PhD Northeastern University

Northeastern

Outline

- 1. Introduction: The Florida Keys and Hurricane Irma
- 2. Post-Storm Reconnaissance
 - a. Shoreline Damage-Island and Parcel Scales
 - b. Structural Damage- Parcel Scale
- 4. Interconnectivities between shoreline archetypes and physical damage
- 5. Homeowner perceptions of shoreline performance
- 6. Longitudinal study
- 7. Conclusions and Next Steps

Florida Keys

Structural Consistency, Shoreline Variability

Hurricane Irma

Duration	30 August-16 September, 2017
Keys Landfall	Cudjoe Key, 10 September, 2017, 1310 UTC, Category 4
Central Pressure	914 mBar (min)*; 929 mBar (Keys landfall)
Wind Speeds	185 mph (maximum)**; 130 mph (Keys landfall)
Storm Surge	3 m (Florida Keys)
Effects	Catastrophic damage in Barbuda, USVI, Caribbean, middle Florida Keys, >146 deaths
US Property Damage	\$53.4 billion***

- * 2nd most intense of 2017 (behind Hurricane Maria)
- ** Strongest of 2017
- *** 5th costliest in US History

Hurricane Irma Best Track: NHC

Hurricane Irma: Hazard Intensity Measures

ADCIRC + SWAN storm simulation courtesy CERA (2017)

	Key West	Big Pine Key
Wind Velocity (m/s)	44.8-49.2	49.3-53.6
Inundation Depth (m)	1.23-2.14	1.53-2.75
Significant Wave Height (m)	0-1.83	0.92-2.74

Parcel Scale Damage Assessments

- NEU-USNA Collaborative Effort
- Key West and Big Pine Key
- Investigate relationship between shoreline resiliency, structural vulnerability, and shoreline management
- October Survey: 263 residential structures,
 332 shorelines

Shoreline Archetypes and Damage Observations

Mangrove: broken branches, loss of foliage, regrowth

Sandy Beaches: erosion

Bulkhead: cracks, undercutting, collapse

Revetment: armament displaced

Standardized Shoreline Damage Descriptions

Shoreline Type	О	1	2	3
Mangrove	No Visible Damage	Aesthetic damage; loss of foliage; loss of <25% of	Loss of 25-50% of mangrove tracts in the form of dead/uprooted trees	Loss of >50% of mangrove tract in form of uprooted/dead trees
		mangrove tract in the form of dead/uprooted trees		
Sandy Beach	No Visible	Aesthetic damage; loss of <25%	Loss of 25-50% of vegetation; significant	Loss of >50% of vegetation; major
	Damage	of vegetation/dune grasses;	erosion (>12" average dune height or	erosion (>3' average dune height
		minor evidence of erosion	shoreline recession per property)	or shoreline recession per
				property)
Bulkhead/	No Visible	Nonstructural/ aesthetic	Failure or partial failure of structural	Complete failure/ collapse of
Vertical Wall	Damage	damage to components; repairs	elements including crumbling, bulging,	structure
		include patching concrete;	collapsing, horizontal cracks>2" and	
		repointing mortar, applying a	scour>6"	
		skim coat		
Revetment	No Visible	Nonstructural/ aesthetic	Failure or partial failure of structural	Complete failure/ collapse of
	Damage	damage to components; repairs	elements including crumbling, bulging,	structure
		include resetting fallen stones;	collapsing, horizontal cracks>2" and	>25% armament rocks displaced,
		<10% armament rocks	scour>6"; 10-25% armament rocks	requiring complete repair
		displaced	displaced	
Hybrid	No Visible	Aesthetic damage; loss of <25%	Loss of 25-50% of vegetation; significant	Loss of >50% of vegetation; major
	Damage	of vegetation; minor evidence	erosion: >12" shoreline recession; 10-25%	erosion: >3' shoreline recession
		of erosion	displaced armament rocks; partial	>25% displaced rocks; complete
		<10% displaced rocks from sills	failure of structural elements	failure

Standardized Shoreline Damage Assessments

- 56 surveyors, 12 shorelines
- 95 % Confidence Intervals > 0.5 DS
- Larger variation for intermediate damage states

Component-Based Structural Damage Assessments

Key West

Big Pine Key

- 0
-)
- 7
- 3
- 4

Relate Hazard to Structural Damage (?)

fb=freeboard DS= damage state

Shoreline Characteristic Affects Structural Damage

SandyRevetment▲ Seawall✓ Mangrove

Structures with mangrove shorelines:

DS for higher wave crest elevations above LHSM

Multinomial Logistic Regression

Multinomial Logistic Regression:

- Shoreline Damage, Structural
 Damage as ordinal response variables
- Shoreline type (mangrove vs. other) as a categorical predictor variable

$$Y_{i,k} \sim \prod_{i=0}^{1} \frac{N!}{Y_{i,k}!} P(DS = DS_i | x_k)$$

Statistical Significance and AIC for Empirical Multinomial Fragility Models

Model	p_{fb}	$p_{\eta wave}$	$p_{\mathit{Shoreline}}$	AIC
Shoreline		0.0028	1.32×10^{-23}	161
Structure	0.041		4.89×10^{-24}	271

Log Odds/ Relative risk

$$\frac{P(DS=0)}{}$$

$$P(DS>0)$$

$$P(DS \le 1)$$

$$\overline{P(DS > 1)}$$

$$P(DS \leq 2)$$

$$P(DS \leq 3)$$

$$\overline{P(DS > 3)}$$

Homeowner Perceptions

- Mixed mode interviews
- Perceived impact of mangroves, seawalls, and beaches, on social and ecological systems during Hurricane Irma

"Mangroves are the only thing keeping the island from eroding"

"90% of beaches were swept away"

"Without mangroves, the impact of the storm would have been much worse"

Longitudinal Study

- Six month return visit, March 2018
- Re-evaluate damage to 250 structures from October survey

Ongoing Work

USNA UNITED STATES NAVAL ACADEMY

- **July, 2018**: Field study to characterize mangrove prop root density, average diameter, elastic modulus, canopy characteristics
- Fall, 2018: 1:16 scale laboratory experiments
 - Effects of roots, leaves, scaling
- Spring, 2019: Field experiments, Key West, FL

Conclusions

- Case study of damage to shorelines, structures after Hurricane Irma
- Ongoing longitudinal investigation to identify recovery trends, repair decisions
- Natural and nature-based features may mitigate overland flow and resulting inland damage during storm events in coordination with engineered structures
 - Need quantitative measurements!
- Homeowner perceptions are important!
 - Need multidisciplinary efforts to find creative solutions to coastal adaptation.

Thank you for your kind attention!

