Prediction of Small Bay Flooding through Tidal Inlet and by Wave Overtopping of Barrier Beach

Tingting Zhu and Nobu Kobayashi

Center for Applied Coastal Research University of Delaware

Introduction

- Simple analytical model to predict bay peak
 Stillwater elevations using available ocean
 Stillwater elevation data (94 years)
- Using field data with 27 storms during 2005-2015
- Coupled with cross-shore model CSHORE to predict wave overtopping of barrier beach during 2012 Hurricane Sandy
- □ Verified by additional 7 storms in 2016 and 2017

Available Field Data in Delaware

Lewes (L), Rehoboth Bay at Dewey Beach (D), Indian River Bay Inlet (I), Indian River at Rosedale Beach (R)

Tide gauges at

- Wave data at WIS 631454, 63156, and
 63158 stations
- Barrier beach profile along 14 crossshore lines (L1 to L14)

Tide Gauge Data

- Datum = North American Vertical Datum of 1988 (NAVD88)
- Water level sampling rate = 0.1 h
- Bay tide gauge data (2005-2015) at I, R and D from U.S. Geological Survey (<u>http://maps.waterdata.usgs.gov/</u>)
- Ocean tide gauge data (94 yr) at Lewes (L) from National Oceanic and Atmospheric Administration (<u>http://tidesandcurrents.noaa.gov/</u>)
 - threshold peak stillwater elevation = 1.27m for storms (Nadal-Caraballo et al. 2016)

Tide Gauge Data

3-day time series of stillwater elevations at 4 tide gauges for storm 20
 Ocean storm tide at gauge L is reduced somewhat at Indian River Bay gauges I and R, and noticeably at Rehoboth Bay gauge D

Offshore Wave Data

- Wave Information Study Stations WIS 63154, 63156 and 63158 of U.S. Army Corps of Engineers (<u>http://frf.usace.army.mil/cgi-bin/wis/</u>)
- H_{mo} = spectral significant wave height,
 - T_p = spectral peak period,
 - θ = vector mean wave angle (Positive Clockwise)
- Differences of H_{mo} less than 10% at 3 stations \rightarrow WIS63156 as numerical model input wave data

Beach Profile Data

- From Hurricane Sandy Digital Elevation Model of NOAA (<u>http://tidesandcurrents.noaa.gov/</u>)
- Beach profiles (cross-shore grid spacing = 8 m) for lines L1-L14 with 515-m alongshore spacing

Analytical Model for Peak Stillwater Elevations

Tidal hydraulics modeling (e.g., Dean and Dalrymple 2002) based on N

 $\eta_o(t)$ = ocean stillwater elevation varying with time t; $\eta_B(t)$ = bay stillwater elevation (invariant horizontally);

Conservation of water volume in a small bay

Fitted:
$$\eta_o(t) = \eta_m sin\left(\frac{\pi t}{T_s}\right)$$

for $0 \le t \le T_s$
 T_s = surge duration

variations of ocean stillwater
elevation
$$\eta_o(t)$$
 with its peak
 η_m at time $t = (T_s/2)$ for
storms 3, 6, 9, and 20

$$\eta_m$$
 = ocean peak stillwater elevation
 η_p = bay peak stillwater elevation

 $A_B \frac{d\eta_B}{dt} = A_C U(t) + Q_W(t)$

• Measured and analytical ratios (η_p/η_m) as a function of surge steepness parameter η_m^* for range of inlet and bay parameter K^* at tide gauges I, R, and D

 $K^* = \frac{8\pi K}{3} \left(\frac{A_B}{A_C}\right)^2 \times 10^{-10}; \, \eta_m^* = \frac{\eta_m}{gT_s^2} \times 10^{10}$

Measured and analytical peak elevations η_p in bay at tide gauges I (K* = 1.5), R (K* = 1.3), and D (K* = 5.1) with 10% or 30% error range and root-mean-square relative error E

Wave Overtopping of Barrier Beach during Hurricane Sandy

□ Wave overwash deposit observed after Hurricane Sandy but no measurement of wave overtopping

The Cross-shore Model CSHORE

- Cross-shore model CSHORE was compared with beach erosion and recovery data along 14 cross-shore lines (spanning 5 km alongshore)
- □ 72-h computation for wave overtopping
- Barrier beach is assumed to consist of 0.33-mm sand without regard to vegetation and a paved road
- If lowered dune crest elevation becomes below ocean SWL, beach becomes submerged assumed: bay SWL = ocean SWL

- L6 = example of high dune crest
- ► L14 = example of low dune crest

Computed temporal variation of hourly wave overtopping rate q_o per unit width along cross-shore lines L6, and L14

- Each line represents 515-m alongshore length
- Wave overtopping volume $v_o (m^3/m)$ per unit width
- Total overtopping volume $V_o = 97 \times 10^6 \text{ m}^3$ over 7.2-km barrier beach
- $(V_o/A_B) = 1.3 \text{ m over bay surface } A_B = 75 \text{ km}^2$

Analytical Model Including Wave Overtopping

 Conservation of water volume in a small bay

$$A_B \frac{d\eta_B}{dt} = A_C U(t) + Q_w(t)$$

• Assume $Q_w(t)$ and $\eta_o(t)$ are in phase

$$\eta_o(t) = \eta_m \sin\left(\frac{\pi t}{T_s}\right)$$
$$Q_w(t) = Q_m \sin\left(\frac{\pi t}{T_s}\right)$$
for $0 \le t \le T_s$

- Maximum wave overtopping rate $Q_m = 1380 \text{ m}^3/\text{s}$
- $Q_o = \text{sum of } (q_o \times 515 \text{ m}) \text{ for } 14$ cross-shore lines

□ Measured and fitted ocean stillwater elevation η_o and computed and fitted wave overtopping rate Q_o over barrier beach of 7.2-km alongshore length

Analytical Model Including Wave Overtopping

Tide Gauge	\mathbf{K}^{*}	Peak Stillwater Elevation (m)		
		Measured η_p	Analytical η _p	
			no overtopping	with overtopping
L	-	1.85	1.85 (Input)	1.85 (Input)
Ι	1.5	1.75	1.63 (6.9%*)	1.76 (0.6%)
R	1.4	1.66	1.67 (0.6%)	1.79 (7.8%)
D	5.1	1.34	1.14 (14.9%)	1.36 (1.5%)

* Relative error between measured and analytical values

- □ The total overtopping water volume is the order of 10⁸ m³, resulting in peak stillwater elevation increase of 0.1-0.2 m
- Increased η_B in the bay reduced water flux escape from the bay to the ocean through the tidal inlet

Verification of Calibrated Model

- 27 storms in 2005-2015
- 7 storms in 2016 and 2017

Measured and analytical peak elevations η_p in bay at tide gauges I (K* = 1.5), R (K* = 1.3), and D (K* = 5.1) with 10% or 30% error range and root-mean-square relative error E

Conclusions

- Simple analytical model for a small bay with a tidal inlet is developed to express bay peak stillwater elevation η_p as a function of ocean peak stillwater elevation η_m and storm surge duration T_s for given dimensionless inlet and bay parameter K^*
- Using the Calibrated K^* for each gauge, η_p is predicted within 10% errors in the Indian River Bay and within 30% errors in shallow Rehoboth Bay. The calibrated K^* was verified by additional 7 storms.
- Wave overtopping and overwash of barrier beach computed during Hurricane Sandy indicates total overtopping water volume of the order of 10^8 m³, resulting in peak stillwater elevation increase of 0.1 0.2 m in bay
- The analytical model coupled with cross-shore CSHORE model was useful in evaluating bay flooding risk during extreme storms in an efficient manner
- The utility of the coupled approach will need to be demonstrated at other field sites with tide gauge data in the bay and ocean in the future work.