36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 - August 3, 2018

The State of the Art and Science of Coastal Engineering

USACE Preparation and Response to 2017 Hurricanes Harvey, Irma, and Maria

Mary Cialone, Associate Technical Director, Flood Risk Management, PE

US Army Corps of Engineers, Engineer Research & Development Center, Coastal & Hydraulics Laboratory

Jane Smith, Julie Rosati, Michael Follum, Chris Massey, Andrew Condon, and Robert Thomas

US Army Corps of Engineers

Outline

USACE Principles of Resilience

- Impacts of Hurricanes Harvey, Irma, Maria
- USACE products applied in support of Emergency Management
 - Preparations, Responses, and Recovery Efforts

R&D Successes/Opportunities for Flood Hazard Mitigation

USACE's Principles of Resilience

Resilience: the ability of a *system* to Prepare (and Plan) for, Resist or Absorb

Damages, Recover from, and more successfully Adapt to function as desired through short- and long-term disturbances

(National Research Council 2012)

Engineering Infrastructure

Environmental Infrastructure

Community Infrastructure

2017 Hurricanes *Harvey*, *Irma*, *Maria*

Significant impacts

Harvey, Cat 4: Aug 24-29 (162 hrs TS warning)

- Slow-moving storm with rapid intensification
- 148 mph winds (Rockport); Pressure 937 mb
- Max: 60.58" (154 cm) rain (record breaking)
- Flood water rescues; displaced homeowners
- 89 deaths
- \$180B in damages

Addicks Reservoir Opened to avoid failure & flooding of neighborhoods

*Not final totals

#Harvey in perspective. So much rain has fallen, we've had to update the color charts on our graphics in order to effectively map it.

http://www.cnn.com/2017/10/10/weather/hurricane-nate

Tropical storm-force winds

2018

Hurricane-force winds

Updated #Harvey rainfall totals...Record breaking rainfall amount at Cedar Bayou 51.80" #txflood #txwx #Harvey

NWSWGRFC 📀

Credit: D. Sternitzky-Di Napoli, Houston Chronicle, Sep 2, 2017

2017 Hurricanes Harvey, Irma, Maria

Significant impacts

Irma: 6-13 Sep

- Powerful Hurricane (Cat 5); Path of destruction
- 185 mph (83 m/sec) winds for 37 hrs; $P_{min} = 914 \text{ mb}$
- Two Cat 4+ storms hit U.S. mainland in same year (first time in 100 yrs)
- Negative surge -3.5 ft (-1 m) rebounded to +10-15 ft (+3-4.5 m), Naples, FL
- 61 deaths
- \$150-200B in damages

Jacksonville, FL, 9/11/17

Credit: https://s.w-x.co/wu/jax-flooding-sheriff-9.11.17-835px.png

http://www.cnn.com/2017/10/10/weather/hurricane-nate

Tropical storm-force winds

ICCE

2018

2017 Hurricanes Harvey, Irma, Maria

Significant impacts

Maria: 17-20 Sep 2017

- Cat 5 Hurricane, 175 mph (78 m/sec) winds; 908 mB (Top 10)
- 18th: Dominica (Cat 5) after Irma & Jose (worst natural disaster in recorded history)
- 20th: Direct Hit to Puerto Rico (30+ hrs); 30 in (76 cm) of rain in one day
- Catastrophe/Humanitarian Crisis: Destroyed infrastructure, lack of resources, locality
- Compounded by 2/3 power loss and 1/3 water loss from Irma 2 weeks prior
- \$5-95B in damages
- 55+ deaths

GSSHA - Reservoir Release Operations & Flooding Alternatives USACE Galveston District

Gridded Surface-Subsurface Hydrologic Model: 2D physics-based watershed model

- Forecast Floodwaters
- Aid Emergency Managers
- Each Rainfall Forecast
 GSSHA
- Surfacewater Hydrology
- Two Domains

0.05 m – 0.3 m

Minor flooding begins, cars still passable

Recover

- 0.3 m 1.0 m
 Cars not passable, high trucks ok
- 1.0 m 2.0 m
 High trucks not ok,
 emergency vehicles ok
- 2.0 m 3.0 m (Areas unreachable) Emergency vehicles not ok
- 3.0m+, First floor underwater

Hurricane Harvey ADCIRC Storm Surge Modeling USACE Galveston District

- USACE Texas Coast, HiFi Modeling Study (Prepare)
- Advanced Circulation (ADCIRC) Model storm surge simulations
- Harvey Simulation Period: 25-29 Aug 2017
- Advisory 16-37 from the National Hurricane Center (NHC)
- Forced with tides, wind, & pressure data derived from NHC Advisories by Seahorse Engineering

Products:

- Water level time series at 10 key locations and maximum water level envelopes
- Used by the Galveston District to provide surge forecasts to emergency managers for decisionmaking

Hurricane Harvey Coastal Hazards System (CHS) & Storm-Sim Coastal Hazards Rapid Prediction System (StormSim-CHRPS) for USACE Galveston District

POCs: Norberto Nadal-Caraballo, Amanda Lewis, Fatima Diop

- Coastal Hazards System (CHS) archives HiFi Model Results
- CHRPS provides rapid estimates of surge in minutes via queries of CHS archive
- Utilized NHC Advisory Track forecasts with "what-if" adjustments for potential landfall
 - e.g., landfall path shifted north to Port Arthur
- Estimates potential water levels from Harvey
- Entire hydrograph within minutes/not hrs
- Used to prepare emergency operations

Peak water level output

Hurricane Harvey

Heat Maps
Vessel AIS
Signal Density

LOMA Applications for Vessel Locations & Port Operations

USACE Galveston and Mobile Districts

POCs: Brian Tetreault, Katherine Touzinsky, Kenneth N. Mitchell, Patricia Dijoseph,

- Lock Operations Management Application (LOMA) used to provide vessel location to USACE Districts and anticipate navigation needs via analysis of Automated Information System (AIS) data
- Used to locate lost vessels, track dredging vessels, and plan for port operations (dredging/re-opening/supplies)

ng vessels, and pening/supplies)

Marin Kress

August 1, 2017
Normal vessel operations

August 25, 2017

Ports close, vessels exit

September 4, 2017

Vessels queue in anchorage

LOMA Analysis

Hurricane Harvey

Galveston District During Storm Activity and Post-Storm Recovery

Rescue Operations

USACE worked with numerous State and Federal Partner Agencies. Search and Rescue Teams completed:

- >21000 Search & Rescue Personnel (State, National, Overseas)
- >34000 People Rescued (>1000 by Air; >33000 by Water)
- >37000 People Evacuated
- >4000 Welfare Checks or Shelter-in-Place on individuals
- >2000 Pets & Animals rescued or evacuated to safety
- Does not include Cajun Navy or Homeland Security team rescues

Navigation Restoration Team

24 survey boats: dredging 12 hr/day for 6 weeks

- 8 Galveston District; 3 New Orleans District
- 4 NOAA; 9 Contractors; 41 Government Surveyors
- \$15B in losses due to Port Closures
- By 9 Sept 2017, surveyed 270 miles (deep draft channels)
- Surveyed 750 miles (shallow draft channels)
- Task: Dredge out; made navigable

Hurricane Irma Herbert Hoover Dike USACE Jacksonville District

- 143-mile Lake Okeechobee earthen dam
- Reduces flooding Impacts to South Florida
- 1920s: Hurricane flooding killed 1000s
- 1930s: USACE built south side levees
- 1947: Congress authorized USACE to build the current 143-mile levee footprint
- Since 2001, USACE invested \$870M to rehabilitate the aging structure

Credit:

Resilience Cycle

https://www.google.com/maps/@26.5730277,-81.5990714,8z

Prepare ... before the storm

- Used lessons learned from Hurricane Matthew (2016) to prepare
- Jacksonville District (SAJ) coordinated with National Weather Service (NWS) (Miami & Melbourne) and State and Local Emergency Managers (Ems) to develop a Standard Operating Procedure (SOP) exclusively for tropical threat to the Lake Okeechobee region (finalized before Irma)
- SOP identifies six milestones related to arrival of tropical storm force winds in order to ensure any flash flood warnings/watches would be issued with appropriate lead time

2018

Absorb/Resist ... during the storm

- Implemented SOP
- Twice daily meetings (SAJ, NWS, EM)
- NWS delivered Meteorological Data to SAJ with each Advisory
 - Applied a surge-only model
 - Deterministic wind forecasts from the best track forecast
- SAJ pre-computed Herbert Hoover Dike Flood Risk
 - Empirical surge calculation
 - STWAVE wave calculation
 - ACES wave run-up calculation → overwash

Recover and Adapt ... after the storm What worked/What needs improvement

- Pre-planning/coordination helped during the event
- NWS results varied widely from Advisory to Advisory needs resolution
- SAJ internal assessment is overly conservative; a higher fidelity modeling system may provide more accurate assessments
- ERDC Coastal Hazard System can provide highly accurate and timely assessments of the risk that include all relevant storm/lake variables

Hurricane Maria: Inland Flooding Estimates with AutoRoute

for US Army South Command

• 18 Sept 2017 0915 – Initial contact: need for storm surge/flood inundation potential from Hurricane Maria for the Rio Guanajibo Basin

- *Population 225000*
- Area 140 sq mi
- Plan for floodwall/channel improvement/levees
- 19 Sept 2017 0830 Official request for flood inundation maps sent to US Army Reachback Operations Center (UROC)
- 19 Sept 2017 1400 Initial 100-yr flood inundation maps produced and linked to forecasted storm surge data

Rapid flood inundation maps (red) matched well with FEMA flood maps (blue)

Hurricane Maria: Inland Flooding Estimates with AutoRoute for US Army South Command

POCs: Mike Follum, Chris Massey, Mark Wahl

BUT request for 1st-order estimates for ALL rivers in < 6 hrs

Input: Readily-Available, High-Resolution:

- 10-m Elevation Data (NOAA, coastal; TanDEM-X, inland)
- Land Cover (defined hydraulic roughness)
- USGS flow regression equation with 100-yr flow estimates
- Automated Cross-Sections (from DEM)

Results:

- First-order inland flow and inundation estimates in < 6 hrs
- Used to plan evacuations and emergency operations

^{*} Storm surge assumed to affect elevations < 5 m

Lessons Learned

- Pre-calculated CHS archive and CHRPS tools enabled rapid forecasting of surge magnitude for range of potential landfall locations (South Atlantic/GOM)
- Existing numerical grids from previous studies enabled assessments in hours to days (aids EMs with reservoir operations and community evacuation)
- Range of tools and products facilitated applications in data-poor regions

Recommended Research Needs

- Prepare: Improve Storm Inundation & Impact Predictions to include coupled coastal/inland models and morphology change (breaching) during storm events
- Prepare for the Next Storms:
 - Complete the Coastal Hazards System (CHS)
 - Develop Emergency Operations Real-Time Response & Recovery
 - Update Engineering Guidance to leverage lessons learned and technological advancements, prior to future storms.
- Prepare/Absorb/Recover: by incorporating Coastal System Resilience in rebuilding efforts including Natural and Nature-based Feature Design Tool

