HURRICANE WATER LEVEL PREDICTION USING SURROGATE MODELING

Jeffrey Melby, Noble Consultants-G.E.C. Inc.

Fatima Diop, Noble Consultants-G.E.C. Inc.
Norberto Nadal-Caraballo, US Army Engineer R&D Center
Alex Taflanidis, University of Notre Dame
Victor Gonzalez, US Army Engineer R&D Center

Contact: jmelby@nobleconsultants.com

1 Aug 2018

Problem

Accurate Risk Assessment – real time and static

- Complex physics and uncertainty demand high fidelity computational models
- Physics-based models are expensive and can be infeasible
- Physics are routinely limited
- Climate forecasts can change rapidly and frequently
- Need to understand uncertainty

 Want flexibility - Stakeholders perspectives change AFTER modeling is complete, hazards of concern may shift (e.g. vary scenarios,

Specific Objectives

- High-fidelity Surrogate Models for Hurricane Response
 - Rapid prediction of response: inundation (surge+tide), wave height, wave period, wave direction, currents, wind speed, wind direction
 - NOAA and Coastal Hazards System data linkage
 - ► Robust surrogate parameterization
 - Uncertainty
- Centralized computation/distribution -Coastal Hazards System
- Stand-alone PC software CHRPS

Nearshore Processes are Complex

Nearshore Circulation

Wave Breaking, Setup and Runup

High Fidelity Modeling

CSTORM-MS:

Coastal STORM Modeling System

WAM:

WAve Prediction Model

STWAVE:

STeady-State Spectral WAVE mode

ADCIRC:

ADvance CIRCulation Model

3M nodes, min res ~20 m.

Parameterization of Tropical Cyclones

HURDAT database – 1851-present

TS are rare so extreme responses not well represented in measurements

Tropical Storms can be parameterized

Response =
$$f(\hat{x}) = f(X_0, DP, R_{max}, V_f, q)$$

 X_0 = Land fall location (lat, lon)

 θ = Angle of storm approach

 ΔP = Minimum central pressure

 V_f = Average forward speed

 R_{max} = Radius of maximum winds

Parameterization of Tropical Cyclones

Non-Exceedance Probability Distributions

Response =
$$f(\hat{x}) = f(X_0, DP, R_{max}, V_f, q)$$

Hybrid Discretization: Uniform: θ , ΔP ; Bayesian Quadrature: R_{max} , V_f

Coastal Hazards System

Climate and Hydro Modeling

WAM

(Regional)

PBL Cyclone Model (Wind and Pressure Fields)

- Water level (storm surge, astronomical tide, SLC)
- Wind speed, direction, currents
- Wave height, period, direction

ADCIRC

CSTORM-MS Coupler STWAVE (Nearshore)

CSTORM

Response Statistics

Combined Joint Probability

Annual Exceedance Probability
Confidence Levels

StormSim

Storm Screening

TX/LA/MS/AL/FL - 1187 storms

- C_p : 900 975 mb
- V_{f} : 11 33 km/hr
- R_{max} : 11 51 km

NACCS - 1150 storms

- C_D : 915 985 mb
- V_f : 12 88 km/hr
- R_{max} : 25 174 km

Surrogate Modeling

Surrogate Techniques: Data Driven

- Least squares regression
- Low dimensional spline interpolation
- Dimensional functions
- Polynomial chaos
- Response surface approximations
- Artificial neural networks
- Kriging or Gaussian process emulation

Gaussian Process Emulator

Want $f(x_1),..., f(x_N)$, but only know $f(x_1),...,f(x_n)$, for n << N.

Need to quantify uncertainty in the estimate?

A statistical inference problem:

Derive a probability distribution for f given $f(x_1),...,f(x_n)$ (an "emulator")

Popular technique: Gaussian process emulation (Sacks et al. 1989)

Assume f(x) = m(x) + Z(x)

m(x) is a parametric function of x (linear, quadratic, spline, ...)

Z is a zero mean Gaussian process (the deviation of f(x) from m)

Z is specified with its covariance where the variance σ^2 suggests how far f(x)

deviates from m(x)

Surrogate Modeling

Inputs

- Forcing, input vector x
 - Land fall location (lat, lon)
 - Landfall angle of storm approach
 - Minimum central pressure (e.g. 90 nm)
 - Landfall forward speed
 - Radius of maximum winds (e.g. 90 nm)

Outputs

 Response: Storm surge, wave height, wave period, wave direction, wind speed, wind direction, currents over region

Augment data with <u>dry node</u> information Reduce dimensionality - Perform PCA to obtain latent space, retain 99.9% of variance – for LA/MS retained ~40 PCs for model trained on peaks and 100 for model trained on time series

New York Bight LOOCV

NACCS Surge Training Set Validation 18977 points overall mean RMSE = 0.11 m

NOAA P-Surge Forecast, 10% Exceedance, NAVD88 ft Hurricane Harvey August 2017

Port Lavaca Gage

Advisory 16 error: +3.1 m Advisory 23 error: +1.8 m

CHRP Example simulation for Hurricane Harvey Validation with Gages for Advisory 16 (36 hours from landfall)

Matagorda Bay Entrance

Port O'Connor

Port Lavaca

CHRP Surrogate Model Software Interface Example simulation for Hurricane Harvey

Peak water level output

Get a plot of time series of surge+tide with landfall indicated

Surrogate Model Uses

- Forecasting in a second
- Import water levels into GIS/GE to illustrate risk
- Scenario analysis
 - Run historical storms with altered parameters
 - Run storms that have not occurred
 - Show the probability of each event separately
 - Varied sea level rise scenarios
- Can be used for risk assessment by running thousands of simulations in probabilistic simulations
- Can add waves, wind, rainfall

