

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

The State of the Art and Science of Coastal Engineering

PRELIMINARY ENGINEERING OF A SEAWALL TO MITIGATE TYPHOON-INDUCED WAVE OVERTOPPING ALONG ROXAS BOULEVARD, MANILA

Eric C. Cruz^{2,1} Jose Carlo Eric L. Santos¹ Laurenz Luigi B. Cruz¹

1. AMH Philippines, Inc.

2. Institute of Civil Engineering, University of the Philippines Diliman

August 3, 2018

Outline

- 1. Introduction
- 2. Methodology
- 3. Project Area Data
- 4. Analysis of Historical Typhoons
- 5. Coastal Engineering
- 6. Preliminary Engineering
- 7. Conclusions

Project Location

(video)

Notes

- Observed water level nearly at level with seawall crest
- Nearly constant wave overtopping

Project Background

Emit ssy of the CS Of AMACINA

http://www.demokrathaber.net/images/album

Project Background

2011

 Typhoon Nesat/Pedring caused overtopping which led to the seawall collapse; rehabilitation of the seawall was immediately undertaken

2012

 High waves induced by Typhoon Saola/Gener overtopped the recently rehabilitated seawall but the seawall was not damaged extensively.

2013

 National Public Works Agency (DPWH) – commissioned a study to understand the typhoon hazards and recommend mitigating measures.

Design Considerations

- 1. Technical Considerations
 - Hazards, such as typhoons and earthquakes
 - Storm Tides and Waves
 - Liquefaction and Lateral Spreading

1990 Luzon Earthquake – resulted in wide-scale liquefaction on the island of Luzon

Photo on the left: <u>thepoc.net</u> Extent of Liquefaction map from Punongbayan and Umbal (1990)

Design Considerations

- 2. Non-Technical Considerations
 - Preservation of the sunset view on Manila Bay
 - Existing adjacent structures
 - Cost-effective design

http://faq.ph/wp-content/uploads/2015/11/201.jpg http://2.bp.blogspot.com/_a8b7S0mN5bM/TVJ2dCDImZI/AAAAAAAAAi4/qAdIASWYpyo/s1600/roxas%2Bblvd.JPG

METHODOLOGY

Conceptual Framework

PRELIMINARY ENGINEERING DESIGN

METHODOLOGY

Conceptual Framework

PROJECT AREA DATA

Site Bathymetry

• Consolidation of bathymetric data from available nautical maps and commissioned bathymetric survey

Historical Typhoons

• Typhoon Tracks of 30 historical typhoons

Historical Typhoons

• Summary of Meteorological Data of Historical Typhoons

Year	Name Int'l/ Local	Vmax (kph)	Rmax (km)	Pc (hPa)	Relative Track	Distance to site (km)
1977	Kim/ Unding	205	230	920	N	60
1978	Rita/ Kading	220	230	880	Ν	80
1979	Mac/ Pepang	100	60	985	S	40
1980	Forrest / Gloring	100	90	992	Ν	120
1981	Irma / Klaring	205	280	905	Ν	140
1982	Winona / Emang	95	0	985	Ν	140
1983	Vera / Bebeng	140	130	965	S	8
1984	Betty / Konsing	95	0	985	Ν	170
1985	Dot / Saling	220	330	895	Ν	90
1986	Georgia / Ruping	85	0	985	S	160
1987	Betty/ Herming	205	190	890	S	100
1988	Ruby / Unsang	140	280	950	N	100
1989	Hunt / Unsing	140	150	960	Ν	120
1990	Nathan / Akang	100	220	980	N	95
1991	Wilda / Warling	85	0	992	S	50

Historical Typhoons

• Summary of Meteorological Data of Historical Typhoons

Year	Name Int'l/ Local	Vmax (kph)	Rmax (km)	Pc (hPa)	Relative Track	Distance to site (km)
1992	Eli / Konsing	130	150	965	Ν	160
1993	Lola / Monang	150	190	955	S	90
1994	Teresa / Katring	150	150	955	S	40
1995	Sibyl / Mameng	95	0	985	N,E	15
1996	Ernie / Toyang	75	0	992	Ν	260
1997	Mort / Pining	85	0	992	N	180
1998	Babs / Loleng	160	260	940	N	110
1999	Eve / Rening	85	0	990	N	25
2000	Xangsane/ Reming	140	150	960	S	10
2001	Cimaron/ Crising	95	0	985	E	180
2006	Xangsane/ Milenyo	160	120	940	S	25
2008	Fengshen/ Frank	165	90	945	E, N	20
2011	Nesat/ Pedring	150	220	950	N	200
2012	Saola/ Gener	130	110	960	E	505
2014	Rammasun / Glenda	165	130	935	S	45

Storm Tides

• Advance Circulation (AdCirc) Numerical Model

Storm Tides

Results - Rammasun / Glenda (2014)

Results Fengshen / Frank (2008)

Results – Xangsane / Milenyo (2006)

Water Surface Elevation			Water Surf	ace Elevation
Trater barr				1.3
	2.6			1.2
	2.5			1.1
	2.4			1
	2.3			0.9
	2.2			0.8
	2.1			0.7
	2			0.6
	1.9			0.5
	1.8			0.4
	1.7			0.3
	1.6			0.2
	1.5			0.1
	1.4			0

• Highest 6 Storm Tide Levels

Typhoon / Local name	Astronomic Tide (m)	Storm Tide Level (m)	Max. Storm Surge (m)	Time of Occurrence of Max STL
Rammasun / Glenda 2014	1.125	2.358	1.233	7/16 10:41 AM
Xangsane / Milenyo 2006	0.473	2.088	1.614	9/28 2:43 PM
Fengshen / Frank 2008	1.244	1.763	0.519	6/21 11:13 AM
Dot / Saling 1985	1.283	1.714	0.431	10/19 1:10 AM
Vera / Bebeng 1983	1.232	1.607	0.375	7/15 12:06 PM
Betty / Herming 1987	1.246	1.515	0.269	8/11 11:09 AM

• Offshore storm wave conditions at time of highest STL

Typhoon / Local name	Offshore significant waves					
	Wave Height (m)	Wave Period (s)	Wave direction			
Ramassun / Glenda 2014	3.6	10.93	SW-5°			
Xangsane / Milenyo 2006	4.45	11.20	SW-10°			
Fengshen / Frank 2008	4.2	12.52	WNW			

Wave Runup

Results - Rammasun / Glenda (2014)

Results Fengshen / Frank (2008)

а

Results – Xangsane / Milenyo (2006)

COASTAL ENGINEERING

• Results of the analysis were compared to the crest elevation of the existing seawall.

	Vertical Siting for STL and Waves (m above MTL)						
Typhoon	Maximum wave runup	Minimum Deficit	Maximum Deficit	Required Vertical Siting			
Rammasun 2014	2.23	1.50	2.18	4.59			
Xangsane 2006	2.51	1.41	2.19	4.60			
Frank 2008	2.92	0.05	2.20	4.68			

COASTAL ENGINEERING

Vertical Siting

	Seawall Stationing					
Seawall Stationing	0+200	0+440	0+680	0+920	1+160	1+300
Seawall Crest Elev.	1.99	2.16	2.21	2.21	2.41	2.48
Vertical Siting (= STL + Wave runp)	3.93	4.20	3.71	4.30	4.60	4.68
Additional wall height (m)	1.94	2.04	1.50	2.09	2.19	2.20

GEOTECHNICAL ENGINEERING Geotechnical Investigation

GEOTECHNICAL ENGINEERING Geotechnical Investigation

Stability Analysis under Earthquake Condition considering the reduction in soil strength due to liquefaction using Slide[™]

Material Name

Concrete

Compacted Sand

Loose Sand

Cobbles

GEOTECHNICAL ENGINEERING

- Considering the presence of the boulder layer, the utilization of **shallow foundation** is feasible.
- Cost comparison between the use of shallow foundation and pile foundation is provided below for reference.

Foundation System	Indicative Costs per linear meter	Remarks	
Shallow Foundation	~ PhP 120,000.00 ~ USD 2,300.00	This includes the rehabilitation of the seawall should liquefaction occur.	
Deep Foundation	~ PhP 360,000.00 ~ USD 6,800.00	This includes bored pile construction only.	

Preliminary Engineering

- Vertical Siting (foregoing)
- Seawall Stability Analysis
- Seawall Cross Section

Design Cases:

- 1. Storm Conditions
- 2. Non-Storm Condition

Loads and Load Combinations:

- Philippine Ports Authority (PPA) Design Guidelines
- National Structural Code of the Philippines (NSCP)
- Coastal Engineering Manual

Seawall Stability Analysis

Case 1: Storm Condition

Dead Load - Dead weight of the concrete seawall structure and fill within the seawall footing.

the backfill on the leeward side of the seawall.

W_{SW} = 100.67 kN/m W_{SH} = 95.59 kN/m

FPH = 305.03 kN/m

 $p_2 = 15.54 \text{ kN/m}^2$

p3 = 32.98 kN/m2

 Wave Force – Force Generated by wave hitting the seawall, solved by using the Goda Formula from the Coastal Engineering Manual. p1 = 33.03 kN/m²

Passive Earth Pressure - Stabilizing Passive Force due to

Upward Force due to Seawall Geometry – Wave force that was added because of the geometry of the re-entrant, based on the calculated wave forces.

p_c = 21.95 kN/m² p_{r2} = 17.04 kN/m²

Hydrostatic Force – Hydrostatic forces composed of Horizontal component and Uplift due to seepage.

EH4 = 2.2 kN/m EH4 = 13.33 kN/m

Earthquake Forces – Earthquake forces from soil and hydrostatic forces determined by multiplying seismic coefficient and obtained formula from PPA.

Page | 15 of 29

Seawall Stability Analysis

Case 2: Non-storm Conditions

Dead Load – Dead weight of the concrete seawall structure and fill within the seawall footing.

W_{sw} = 100.66 kN/m W₆₀ = 95.59 kN/m

Aydrostatic Force – Hydrostatic forces composed of Horizontal component and Uplift due to seepage.

EHu = 29.09 kN/m EHu = 48.48 kN/m

Active Earth Pressure – Overturning Active Force due to the backfill on the leeward side of the seawall and estimated surcharge based from NSCP.

 $FA_{\mu} = 33.82 \text{ kN/m}$ $F_{q} = 3.33 \text{ kN/m}$

Earthquake Forces – Earthquake forces from soil and hydrostatic forces determined by multiplying seismic coefficient and obtained formula from PPA.

 $FA_{HE} = 25.12 \text{ kN/m}$ $F_{eE} = 2.47 \text{ kN/m}$ $FH_{EH} = 6.55 \text{ kN/m}$ $FH_{EH} = 5.45 \text{ kN/m}$

Seawall Cross-section

Site Development

- Seawall Promenade is raised to maintain view of Manila Bay sunset from land
- Interior drainage to allow overtopping water to flow back to sea or detained temporarily

CONCLUSIONS

- Historical typhoons tracking within the project seawall are analyzed to obtain historical storm tide levels and wave runup
- The non-overtopping crest elevation (MTL +4.68 m) is used as basis of the crest elevation of the rehabilitated seawall.
- A geotechnical investigation and analysis established that a shallow foundation is best for the seawall site considering safety and economy.
- Preliminary engineering is completed by carrying out external stability analyses to obtain seawall geometry and cross-section
- The access to the sunset view of the bay is considered in the site development concept.

THANK YOU for your attention.