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Port Oarai, Japan

● Interaction of the 2011 tsunami currents 
with the coastline created special effects.

● Formation of a gigantic rotational flow 
structure seen in a helicopter video. 300m

The formation of a gigantic eddy inside the port basin

Observation of a tsunami-induced eddy
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● 2D TCS definition: 
○ “Two-dimensional, connected, large-scale turbulent fluid masses that extend uniformly over the full 

water depth and contain a phase-correlated vorticity, with the exception of a thin near-bottom 
boundary layer”. (Hussain 1983; Jirka 2001)

● TCSs form in unidirectional and fully turbulent (Re >> 103) shallow flows (L/H >>1).
○ L is a characteristic length-scale, H is the flow depth.

● Kinetic energy decay is dominated by bottom friction.

L

TCS generated by 

transverse shear due to the 

presence of a breakwater

Turbulent Coherent Structures (TCS)
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Oarai, Japan 2011

● Lack on quantitative data on wave-induced TCS: setup a laboratory experiment.

● Re-create a shallow TCS in a well controlled environment.

● Study flow field during the TCS spatial growth and spin-down.

● Develop tools to estimate time-scales of TCS development and decay.

The wave basin used for the experiments. Wave basin

Large-scale experiments
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Experimental setup
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top view of wave basin
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3.1 mharbor channel

Experimental setup
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Experimental scaling

● Experimental scale: ~ 1/27

● Prototype wave period : ~4 min

● Prototype wave amplitude: ~ 1 m

———————————————————-

● Large Rossby number 

● Fully-turbulent flow (Re = O(105))

● Sub-critical (Fr = 0.38)

● Laboratory results scale-independent for 
small-scale geophysical flows.
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Experimental setup
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The three flow phases in the laboratory
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2D PTV experiments
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Particle tracking velocimetry (PTV) experiments

● Record experiment using 4 overhead cameras.

● Introduce surface tracers to the flow to extract 
surface velocity vectors.

● Repeat experiment multiple times.

4cm surface tracer

Overhead camera fields of view 
(FOVs) 
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A single 2D PTV experiment
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(1) Tracer center detection (2) Particle tracking

2D PTV steps to extract surface velocity vectors
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Kalligeris and Lynett (2017), Exp Fluids (in preparation)

(3) Image- to world-coordinate transformation (4) Extraction of surface velocity vectors
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Experimental analysis  – phase 3
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Detached TCS growth 
and evolution
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TCS-centered ensemble

Obtain azimuthal-averaged TCS velocity profiles

● Construct a TCS-centered ensemble.

● Get azimuthal-averaged velocity profiles.

TCS paths from all experimental trials

azimuthal average (mean)

scattered points

standard deviation

Top view of TCS-centered 
vector ensemble Azimuthal velocity Radial velocity
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Governing equations of motion

● Depth-averaged, incompressible equations of motion: hydrostatic, axisymmetric 

continuity equation

○ h is the still water depth.

○ η is the surface elevation.

○ d is the total water depth (d=h+η).

○ uθ is the azimuthal velocity.

○ ur is the radial velocity.

○ νeff is the added turbulent viscosity.

Momentum 

equations

bottom shear 

stress term
turbulent diffusion termsconvective terms
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Governing equations of motion

● Depth-averaged, incompressible equations of motion: hydrostatic, axisymmetric 

● Assume purely azimuthal flow (ur = 0)

continuity equation

Momentum 

equations

cyclostrophic balance equation

radial diffusion equation

● Turbulent viscosity νeff = Sqrt(cf/2)Uh

● Bottom shear stress τbθ = cf ρuθ
2/2

○ cf is the quadratic law friction coefficient
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TCS kinetic energy decay
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● Radial diffusion equation

● Bottom friction dominates kinetic decay

bottom friction term

● Separation of variables provides temporal 
azimuthal-velocity dependence  

experimental decay

Decay of maximum uθ with time

analytical decay
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● Compare azimuthal velocity profiles with the stirring vortex profile (or α-profile)
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Fit uθ scattered data to stirring vortex profileVortex α-profile

TCS primary flow radial profile

- R(t) is the radius of uθ,max(t)

- a is a free parameter
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● Full azimuthal-velocity profile (primary flow)
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TCS free surface elevation (FSE) profile

● Use cyclostrophic balance equation to infer the experimental TCS FSE profile

Predicted ηmin decay at 

TCS center 
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Evolution of TCS radial velocity profile

Secondary flow components - radial velocity

Tracer-conglomerate compactness 

at TCS center
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● Use kinematic free surface boundary condition for axisymmetric flow

, where w(r,η) is the vertical velocity at the free surface (+ upwards)

positive quantity

Radial velocity profile

Secondary flow components - vertical velocity
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Flow transition to Q-2D

● The kinetic energy of velocity

components (ur, uθ) in the free

surface are evaluated from

Transition to Q2D 

● Study the decay of the kinetic energy of the radial and azimuthal flow components

Ratio of radial and azimuthal kinetic energy

Tracer-conglomerate compactness 

at TCS center
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Summary
● The flow structure of a wave-induced TCS was studied through a series of large-

scale experiments in a wave basin

● First-order models were derived to describe TCS flow field, spatial growth, kinetic 
decay, and the FSE around the TCS-center

● The secondary flow components suggest a flow recirculation pattern along the 
water depth

● The secondary flow components decay faster than the primary flow component, 
leading to a more Q-2D flow at later stages.
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