ICCE 2018, Baltimore, USA

Large-scale experiments on waveinduced shallow turbulent coherent structures

Experimental observations and interpretation

Nikos Kalligeris

PostDoctoral Scholar, University of California, Los Angeles

Patrick Lynett

Professor, University of Southern California

Observation of a tsunami-induced eddy

Port Oarai, Japan

- Interaction of the 2011 tsunami currents with the coastline created special effects.
- Formation of a gigantic rotational flow structure seen in a helicopter video.

The formation of a gigantic eddy inside the port basin

ICCE 2018, Baltimore, USA Nikos Kalligeris University of California, Los Angeles

Turbulent Coherent Structures (TCS)

- 2D TCS definition:
 - "Two-dimensional, connected, large-scale turbulent fluid masses that extend uniformly over the full water depth and contain a phase-correlated vorticity, with the exception of a thin near-bottom boundary layer". (Hussain 1983; Jirka 2001)
- TCSs form in unidirectional and fully turbulent ($Re >> 10^3$) shallow flows (L/H >> 1).
 - *L* is a characteristic length-scale, *H* is the flow depth.
- Kinetic energy decay is dominated by bottom friction.

TCS generated by transverse shear due to the presence of a breakwater

Large-scale experiments

- Lack on quantitative data on wave-induced TCS: setup a laboratory experiment.
- Re-create a shallow TCS in a well controlled environment.
- Study flow field during the TCS spatial growth and spin-down.
- Develop tools to estimate time-scales of TCS development and decay.

The wave basin used for the experiments.

ICCE 2018, Baltimore, USA Nikos Kalligeris University of California, Los Angeles

Experimental setup

ICCE 2018, Baltimore, USA

Experimental setup

Experimental setup

The three flow phases in the laboratory

ICCE 2018, Baltimore, USA Nikos Kalligeris University of California, Los Angeles

The three flow phases in the laboratory

The three flow phases in the laboratory

ICCE 2018, Baltimore, USA Nikos Kalligeris University of California, Los Angeles

2D PTV experiments

ICCE 2018, Baltimore, USA

11 /25

A single 2D PTV experiment

ICCE 2018, Baltimore, USA Nikos Kalligeris University of California, Los Angeles

2D PTV steps to extract surface velocity vectors

ICCE 2018, Baltimore, USA

Nikos Kalligeris University of California, Los Angeles

Experimental analysis – phase 3

ICCE 2018, Baltimore, USA Nikos Kalligeris University of California, Los Angeles

TCS-centered ensemble

Obtain azimuthal-averaged TCS velocity profiles

- Construct a TCS-centered ensemble.
- Get azimuthal-averaged velocity profiles.

ICCE 2018, Baltimore, USA

Governing equations of motion

• Depth-averaged, incompressible equations of motion: hydrostatic, axisymmetric

$$\frac{\partial \eta}{\partial t} + \frac{1}{r} \frac{\partial (r d\bar{u}_r)}{\partial r} = 0, \quad \text{continuity equation}$$

$$\frac{\partial \bar{u}_r}{\partial t} + \bar{u}_r \frac{\partial \bar{u}_r}{\partial r} - \frac{\bar{u}_{\theta}^2}{r} = -\frac{1}{\rho} \frac{\partial p}{\partial r} + \nu_{eff} \left[\frac{1}{d} \frac{\partial \eta}{\partial r} \frac{\partial \bar{u}_r}{\partial r} + \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial (r\bar{u}_r)}{\partial r} \right) \right] - \frac{\tau_{br}}{\rho d}, \quad \text{Momentum equations}$$

$$\frac{\partial \bar{u}_{\theta}}{\partial t} + \bar{u}_r \frac{\partial \bar{u}_{\theta}}{\partial r} + \frac{\bar{u}_{\theta} \bar{u}_r}{r} = \nu_{eff} \left[\frac{1}{d} \frac{\partial \eta}{\partial r} \frac{\partial \bar{u}_{\theta}}{\partial r} + \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial (r\bar{u}_{\theta})}{\partial r} \right) \right] - \frac{\tau_{b\theta}}{\rho d}. \quad \text{bottom shear stress term}$$

$$\circ \quad h \text{ is the still water depth.} \quad \circ \quad u_{\theta} \text{ is the azimuthal velocity.}$$

• *d* is the total water depth $(d=h+\eta)$.

• *v_{eff}* is the added turbulent viscosity.

ICCE 2018, Baltimore, USA

Governing equations of motion

• Depth-averaged, incompressible equations of motion: hydrostatic, axisymmetric

$$\frac{\partial \eta}{\partial t} + \frac{1}{r} \frac{\partial (r d \bar{u}_r)}{\partial r} = 0, \quad \text{continuity equation}$$

$$\frac{\partial \bar{u}_r}{\partial t} + \bar{u}_r \frac{\partial \bar{u}_r}{\partial r} - \frac{\bar{u}_{\theta}^2}{r} = -\frac{1}{\rho} \frac{\partial p}{\partial r} + \nu_{eff} \left[\frac{1}{d} \frac{\partial \eta}{\partial r} \frac{\partial \bar{u}_r}{\partial r} + \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial (r\bar{u}_r)}{\partial r} \right) \right] - \frac{\tau_{br}}{\rho d},$$
$$\frac{\partial \bar{u}_{\theta}}{\partial t} + \bar{u}_r \frac{\partial \bar{u}_{\theta}}{\partial r} + \frac{\bar{u}_{\theta} \bar{u}_r}{r} = \nu_{eff} \left[\frac{1}{d} \frac{\partial \eta}{\partial r} \frac{\partial \bar{u}_{\theta}}{\partial r} + \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial (r\bar{u}_{\theta})}{\partial r} \right) \right] - \frac{\tau_{b\theta}}{\rho d}.$$

Momentum equations

• Assume purely azimuthal flow (*u_r* = 0)

$$\frac{u_{ heta}^2}{r} = rac{1}{
ho} rac{\partial p}{\partial r}$$
 cyclostrophic balance equation

$$\frac{\partial u_{\theta}}{\partial t} = \sqrt{\frac{c_f}{2}} u_{\theta} h \left[\frac{1}{h} \frac{\partial \eta}{\partial r} \frac{\partial u_{\theta}}{\partial r} + \frac{1}{r} \frac{1}{\partial r} \left(r \frac{\partial u_{\theta}}{\partial r} \right) - \frac{u_{\theta}}{r^2} \right] - \frac{c_f u_{\theta}^2}{2h} \quad \text{radial diffusion equation}$$

ICCE 2018, Baltimore, USA

Nikos Kalligeris University of California, Los Angeles

TCS kinetic energy decay

ICCE 2018, Baltimore, USA

Nikos Kalligeris University of California, Los Angeles

TCS primary flow radial profile

• Compare azimuthal velocity profiles with the stirring vortex profile (or α -profile)

ICCE 2018, Baltimore, USA

TCS free surface elevation (FSE) profile

• Full azimuthal-velocity profile (primary flow)

$$u_{\theta}(r,t) = u_{\theta,max}(t)\frac{r}{R}\exp\left(\frac{1-(r/R)^a}{a}\right), u_{\theta,max}(t) = \frac{1}{\frac{1}{u_{\theta,max,0}} + \frac{c_f}{2h}t}$$

• Use cyclostrophic balance equation to infer the experimental TCS FSE profile

ICCE 2018, Baltimore, USA

Nikos Kalligeris University of California, Los Angeles

Secondary flow components - radial velocity

Tracer-conglomerate compactness at TCS center

ICCE 2018, Baltimore, USA

Nikos Kalligeris University of California, Los Angeles

Secondary flow components - vertical velocity

Use kinematic free surface boundary condition for axisymmetric flow

Flow transition to Q-2D

• Study the decay of the kinetic energy of the radial and azimuthal flow components

ICCE 2018, Baltimore, USA

Summary

- The flow structure of a wave-induced TCS was studied through a series of largescale experiments in a wave basin
- First-order models were derived to describe TCS flow field, spatial growth, kinetic decay, and the FSE around the TCS-center
- The secondary flow components suggest a flow recirculation pattern along the water depth
- The secondary flow components decay faster than the primary flow component, leading to a more Q-2D flow at later stages.

Funding

- This project was funded by the NEES-NSF grant 1135026.
- 4-year USC Viterbi fellowship.
- Myronis Foundation fellowship.

Acknowledgements

- The NSF grant was awarded to Professor Patrick Lynett who's vision and guidance made this project possible.
- Many thanks to Aykut Ayca (USC) and Adam Ryan (OSU) for their help during the experiments at OSU.

ICCE 2018, Baltimore, USA Nikos Kalligeris University of California, Los Angeles