{(ECE 36TH INTERNATIONAL CONFERENCE

ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 — August 3, 2018

)()Io

The State of the Art and Science of Coastal Engineering

A Design-Life Based Approach To Multi-Hazard Risk Analysis
USCViterbi e

University of Southern California

School of Engineering

USC\II terbi Patrick J. Lynett, Ph.D.

School of Engineering University of Southern California



Outline =

Motivation

Approach

Methodology

S S

Results: Meteorological and
Sea Level Rise Risk

5. Results: Tsunami and Sea
Level Rise Risk

Discussion

Conclusion




Motivation:

What natural hazards will impact California small craft harbors in the future?

Santa Cruz Harbor District

TSUNAMI

(E.G. CURRENT SPEED)
(see KEEN ET AL., 2017)
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Approach:

Meteorological water level, tsunami (e.g. surface elevation) and sea level rise will all impact
a harbor at various points during the harbor’s service life.

Let’s consider how these 3 hazards are distributed over the harbor’s design life (i.e. hazard),

how the events impact the harbor (i.e. vulnerability), and the cumulative consequences (i.e.
risk).

Assuming a random distribution of events, we can generate a time series of extreme events
within a harbor’s design life. Assessing the hazard at each time and iterating will help quantify
multi-hazard specific risk over the design life.
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Case Study: Santa Cruz Harbor

Let’s compare meteorological water level, tsunami and sea level rise risk for Santa Cruz
Harbor. But first we need to decompose a tide gauge!

Angel Island
San Francisco Tide/Gauge: .-

Santa Cruz Harbor o5

Tsunami'Hazard Curve

Source: Google Earth

NOAA Tides & Currents
San Francisco, CA - Station ID: 9414290
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What’s contained in an NOAA tide gauge?

1. Astronomical water level

2. Seasonal effects & climate cycles (e.g.
ENSO) p
=

3. Meteorological water level ' '
4. \Wave effects
5. Historical tsunami

Metrological, Wave, Tsunami
6. Historical sea level rise and Resonance Effects

Seasonal Effects & Climate
Cycles (e.g. ENSO)

Sea Level Rise




What’s contained in an NOAA tide gauge?

1. Astronomical water level
2. Seasonal effects & climate cycles (e.g.
3. Meteorological water level

. 4.  Wave effects

i (m NAVDS8)

(=] - N w

'
-

- N

agtr (M)
(=]

-2
1900

San Francisco, CA - Station ID: 9414290
| T | T

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

T T
ASTRONOMICAL

| | | | | | | | | |
1810 1920 1930 1940 1950 1960 1970 1880 1990 2000 2010

I I I I
Il
[ SEASONAL & CLIMATE CYCLES |

"

L | | | | | | | | | |
1980 1990 2000 2010

- METEOROLOGICAL | _|
DAILY MAX

1980

1990 2000 2010

oJ




Probabilistic Hazard Estimate

e Geist and Parsons (2006) & Geist and Lynett (2014)

e Probabilistic analysis of hazard (PHA) provides a
means to incorporate natural uncertainties, model
uncertainties and errors into the hazard
assessment

e To do this, we conceptually separate a “return
period storm” and a hazard “recurrence period”

e So... for a metocean-determined storm return
period there is really a distribution of possible
impacts that a unique “return period storm”
might cause
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Meteorological and Sea Level Rise Hazard: A Monte Carlo Based

Approach
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Meteorological and Sea Level Rise Risk: A Monte Carlo Based
Approach
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Results:
Meteorological and Sea Level Rise Risk (Failure Probability)

Meteorological
3.25 | |

(o8

M2
N
n on

Pile Height (m NAVD88)
N
Mo
n

5 10 15 20 25 30 35 40
Design Life (yr)

0 10 20 30 40 50 60 70 80 90 100
Failure Probability (%)

11




Tsunami and Sea Level Rise Hazard: A Monte Carlo Based

Approach
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Results:
Tsunami and Sea Level Rise Risk (Failure Probability)
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Results:

Meteorological, Tsunami and Sea Level Rise Risk (Failure Probability)
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Discussion:

e Methodology identifies differences in meteorological
vs. tsunami risk during a harbor’s design life.
1) 15t half — meteorological risk > tsunami risk
2) 2" half - tsunami risk > meteorological risk
3) Sea level rise increases relative risk of hazards

e Design life approach can be generalized to a variety

hazard/vulnerability relationships.

e Method does not consider “recovery” but could be
included for hazards where failure is not binary (i.e.
tsunami current speed).
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Conclusion:

Motivation: What natural hazards will impact California small craft
harbors in the future?

e Approach: Generate a time series of extreme events within a
harbor’s design life. Assessing the hazard at each time and iterating
will help quantify multi-hazard specific risk over the design life.

 Methodology identifies differences in meteorological vs. tsunami
risk during a harbor’s design life. Sea level rise increases relative
risk of hazards.

* Design life approach can be generalized to a variety
hazard/vulnerability relationships to identify risk.
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