Undular bore development over a laboratory fringing reef

<u>Marion Tissier</u>*, Jochem Dekkers, Ad Reniers, Stuart Pearson, Ap van Dongeren *m.f.s.tissier@tudelft.nl

Introduction

- Fringing reefs occur around low-lying islands, which are particularly vulnerable to flooding
- Infragravity waves (T>25 s) often dominate the hydrodynamics on the reef flat and drive shoreline motion at reef-fronted beaches
- Understanding their transformation over the reef flat is key to mitigate flooding risks in the future

Introduction – Undular bore formation

- Non-hydrostatic effects can become important when long waves steepen in shallow water
 - \rightarrow Formation of undulations behind the front

Introduction – Field observations of undular bores over coral reefs

Introduction – Field observations of undular bores over coral reefs

Laboratory data

- Colocated measurements of free surface elevation (|) and velocity (*)
 - Runup meter (---)

In this presentation: focus on **regular long wave** cases (cnoidal waves), scaled to represent **infragravity waves** (T=10-20 s \rightarrow T_{prototype} =45-90 s).

IG wave transformation

Here: $H_0=2cm$; $T_0=20 s$

ŤUDelft

incident

reflected

IG wave transformation

Here: $H_0=2cm$; $T_0=20 s$

ŤUDelft

IG wave transformation (incoming signal)

ÍUDelft

Secondary peak, downshifting in time

Energy transfer out of the 'IG frequency' band $(f < f_{cut}, with f_{cut} \approx 0.04 Hz)$ in prototype)

Runup on the back-reef beach

Runup on the back-reef beach

Runup on the back-reef beach

 Max runup fairly well-described by empirical formula derived for breaking solitary waves

- Measured runup
- Fuhrman and Madsen, 2008
 - $R_{max} = 3,9H \xi^{0,42}$ and $\xi = S/(H/d)$

Conclusions

- Infragravity-scaled regular waves formed undular bores over our lab fringing reef for all 4 cases considered
- Development of undulation associated with a significant energy transfer towards short-wave frequency band
- Reef width sufficient to allow for the first undulation to develop into a solitary wave that controls maximum runup

Next steps

- Analysis bichromatic wave cases
- Numerical modelling

Numerical modelling using SWASH (Zijlema et al. 2011)