Undular bore development over a
laboratory fringing reef
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Introduction

Fringing reefs occur around low-lying islands, which are
particularly vulnerable to flooding

Infragravity waves (T>25 s) often dominate the hydrodynamics
on the reef flat and drive shoreline motion at reef-fronted
beaches

Understanding their transformation over the reef flat is key to
mitigate flooding risks in the future



Introduction — Undular bore formation

* Non-hydrostatic effects can become important when long
waves steepen in shallow water

— Formation of undulations behind the front

Example: tsunami-like wave in the nearshore (d=20 m)
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Introduction — Field observations of undular bores
over coral reefs
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Introduction — Field observations of undular bores
over coral reefs

Consequences in terms of "
frequency distribution of the

energy?
Cop;sequences for the runup?

]
TUDelft




Laboratory data
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* Colocated measurements of free surface elevation (|) and velocity (*)

In this presentation: focus on regular long wave cases (cnoidal waves),
scaled to represent infragravity waves (T=10-20s > T =45-90 s).
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|G wave transformation

Here: H,=2cm; T,=20 s
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|G wave transformation

Here: H,=2cm; T,=20 s
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Elevation timeseries
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Runup on the back-reef beach

a. Reef crest b. Beach toe c. Runup
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Runup on the back-reef beach

a. Reef crest b. Beach toe c. Runup
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Runup on the back-reef beach

*  Max runup fairly well-described by empirical formula derived
for breaking solitary waves

. * Measured runup
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Conclusions

* Infragravity-scaled regular waves formed undular bores over our lab
fringing reef for all 4 cases considered

* Development of undulation associated with a significant energy
transfer towards short-wave frequency band

* Reef width sufficient to allow for the first undulation to develop into a
solitary wave that controls maximum runup
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* Analysis bichromatic wave cases
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