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• Fringing reefs occur around low-lying islands, which are 
particularly vulnerable to flooding

• Infragravity waves (T>25 s) often dominate the hydrodynamics 
on the reef flat and drive shoreline motion at reef-fronted 
beaches 

• Understanding their transformation over the reef flat is key to 
mitigate flooding risks in the future

Introduction
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Introduction – Undular bore formation

• Non-hydrostatic effects can become important when long 
waves steepen in shallow water 

→ Formation of undulations behind the front

Fiji
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Example: tsunami-like wave in the nearshore (d=20 m)

Tissier et al., 2011
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Introduction – Field observations of undular bores 
over coral reefs

Hawaii (Gallagher, 1972)
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Introduction – Field observations of undular bores 
over coral reefs

Marshall islands (Google Earth)

• Can IG waves turn into undular bores 
over the reef flat? 
• Consequences in terms of 

frequency distribution of the 
energy?

• Consequences for the runup?
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Laboratory data

• Colocated measurements of free surface elevation (|) and velocity (*)

• Runup meter (…..)
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J. Dekkers, 2017 
Hydraulic 
Engineering lab

In this presentation: focus on regular long wave cases (cnoidal waves), 
scaled to represent infragravity waves (T=10-20 s → Tprototype =45-90 s).
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IG wave transformation
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IG wave transformation
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IG wave transformation (incoming signal)
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Amplitude spectraElevation timeseries
fcut

Energy transfer out of the
‘IG frequency’ band
(f<fcut, with fcut ≈ 0,04 Hz 
in prototype)

Secondary peak, 
downshifting in time
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H0=2cm; T0=20 s



10

+                   +
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a. Reef crest b. Beach toe c. Runup

Runup on the back-reef beach

H0=4cm;
T0=10s

H0=2cm;
T0=20s
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Runup on the back-reef beach

𝑅𝑚𝑎𝑥 = 3,9𝐻 𝜉0,42 𝑎𝑛𝑑 𝜉 = 𝑆/(𝐻/𝑑)

Fuhrman and Madsen, 2008
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• Max runup fairly well-described by empirical formula derived 
for breaking solitary waves

• Measured runup
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Conclusions

• Infragravity-scaled regular waves formed undular bores over our lab
fringing reef for all 4 cases considered

• Development of undulation associated with a significant energy
transfer towards short-wave frequency band

• Reef width sufficient to allow for the first undulation to develop into a 
solitary wave that controls maximum runup

Next steps

• Analysis bichromatic wave cases

• Numerical modelling

Numerical modelling using SWASH (Zijlema et al. 2011)


