
Wind Tunnel Tests of How Plants Feedback on Dune Shape

Bianca Reo Charbonneau

University of Pennsylvania PhD Candidate

bcharbon@sas.upenn.edu

Thedunegoon.weebly.com

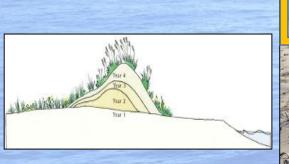
Overarching Research Question

How do coastal dunes respond to & recover ecologically after episodic events like a hurricane?

- Governing biotic & abiotic controls on recovery (plant recolonization) post-disturbance
 - Geomorphological consequences of recolonization

Coastal Dunes

Coastal dunes – natural buffers that absorb the destructive power of waves by physically blocking upland areas during high tides & storms > buffers to erosion


A beach with dunes is:

- More capable of responding & withstanding storm events
- 2. Helps to maintain the beach system better in long-term
- Stabilized & built up over time by plants
- Roots stabilize sand
- Shoots catch windblown sand
 - Fencing mimics plant leaves

Dune Genesis: Nekha & Shadow Dunes

- Plant mediated → ecosystem engineers
 - any organism that creates, significantly modifies, maintains or destroys a habitat

- Plant shape feeds back on dune shape (Hacker et al 2011, OIKOS)
 - Taller & steeper plant will build a taller steeper dune
 - Shorter sprawling plant will build shorter & broader dune

SHRUB

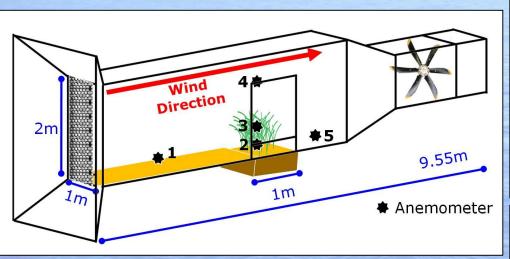
ZONE

FOREST

MARY

BEACH

DUNE


MEADOW

2) Incipient
Foredune/ Nascent
dune
Hesp 2002

MERGED

Research Goal

Biophysical feedback mediates effects of invasive grasses on coastal dune shape

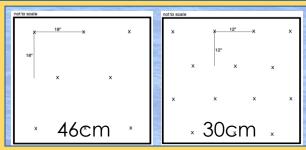
Phoebe L. Zarnetske, ^{1,6} Sally D. Hacker, ¹ Eric W. Seabloom, ² Peter Ruggiero, ³ Jason R. Killian, ⁴ Timothy B. Maddux, ⁴ and Daniel Cox ⁵

Build a moveable bed unilateral flow wind tunnel to test how morphology among & within dominant US East coast foredune plants feeds back on coastal dune shape at the initial level (nebkha/shadow dune) varying plant density & species at a baseline of zero accumulation (i.e. flat back beach or post storm)

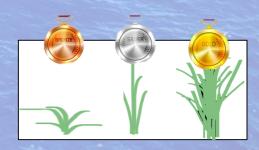
Wind Tunnel

Waretown, NJ Ocean County Vocational Technical School

- Standalone Class II laser
- True mm values in all dimensions
- Height res = 80 670 µm precision

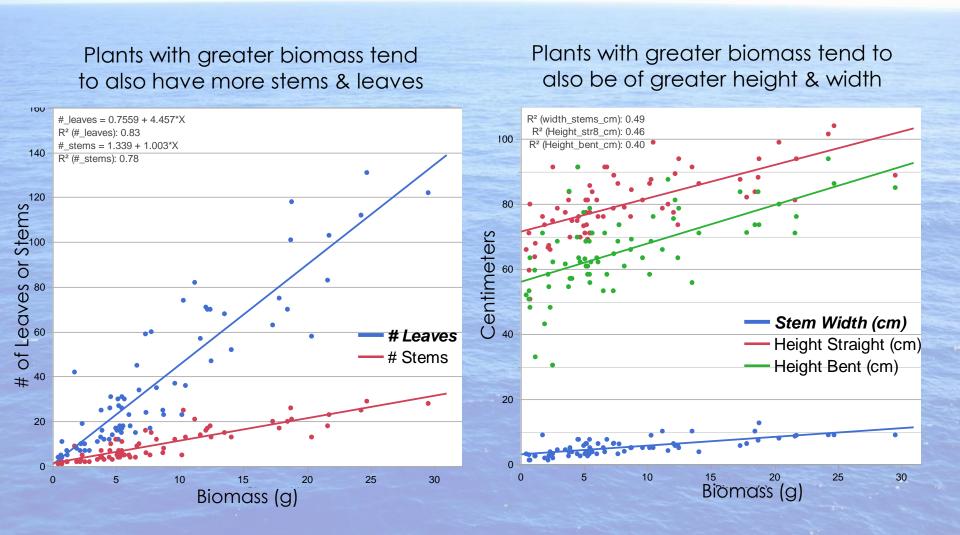


Methods



1)Plant Morphology

- Width of plant stems
- # leaves & stems
- Height: taut & bent
- **Biomass**
- 2) Exp 18.5mph (8.25 m/s) ground level 30 min
- 3) Harvest biomass → cut
- 4) Topographic 3D scan
- 5) Analyses of bedform morphology

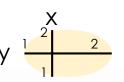


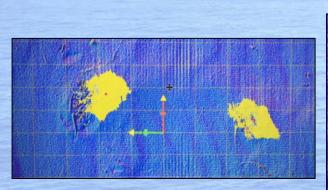
8 boxes/replicates per spp

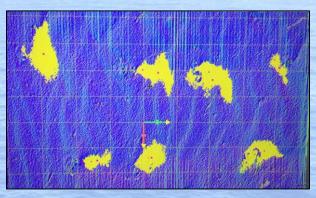
- 4 per density
- Null blank box
 - 4 trials

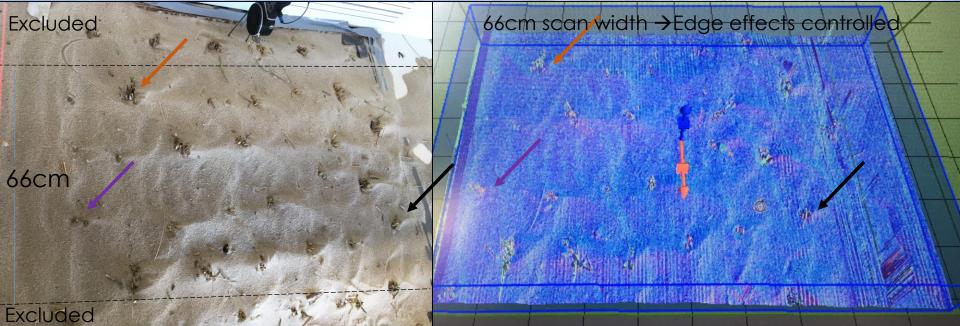
Biomass Most informative Plant Morpho Variable

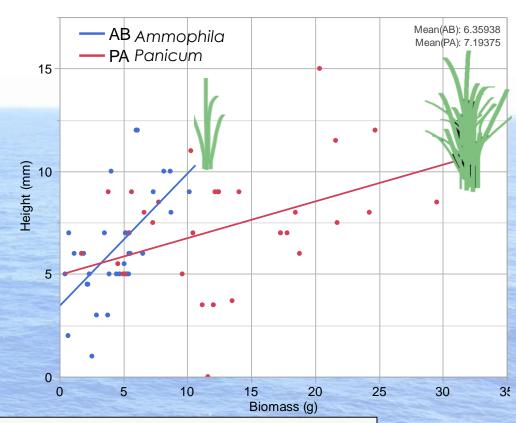
Results: Null Boxes Produced Only Ripples


No plants = no bedform creation i.e. accretion


 $N_{NULL} = 4$




Results: Bedforms Accumulated y 2/2/2


- **SOPAS Blob tool** locates point clusters within a defined area & height range
 - Yellow areas = blobs, i.e. bedforms

Results: Bedform Height (mm) Varied

Mixed models with unbounded variance

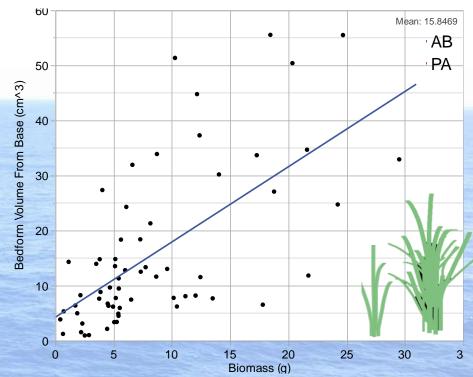
- Box = random effect
- Fixed Effects: Density (Dens), Species (Sp), Biomass (Biom), Row
- Interactions: row, Sp X Den, Sp x Biom, Sp x Biom x Den

95% Upper

5.5939237

2.2921352

0.6151517


0.4376857

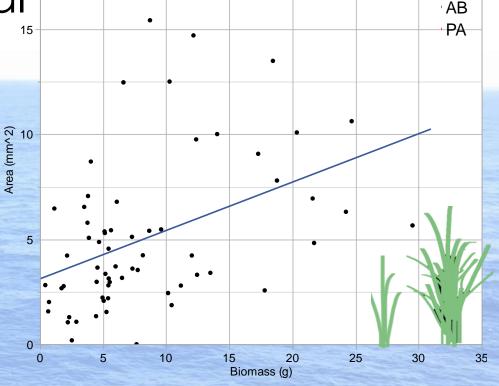
Fixed Effects Parameter Estimates Std Error DFDen t Ratio Prob>|t| 95% Lower Term Estimate Intercept 4.2023298 0.6825826 31.3 6.16 2.8107358 <.0001* Species[AB] 1.2671534 0.5070793 39.8 2.50 0.0167*0.2421716 dry_weight_g 0.411454 0.1017811 58.5 0.2077564 4.04 0.0002*Species[AB]*(dry_weight_g-8.54145) 0.233988 0.1017811 58.5 2.30 0.0251* 0.0302903 Random Coefficients Bedform height Fixed Effects Tests varied by biomass, Nparm DFNum DFDen Source F Ratio Prob > F which varied by Species 6.2446299 0.0167*species dry_weight_g 16.342134 0.0002*Species*dry weight a 5.2851006 0.0251*

Results: Bedform Volume (cm³) Varied

Mixed models with unbounded variance

- Box = random effect
- Fixed Effects: Density (Dens),
 Species (Sp), Biomass (Biom), Row
- Interactions: row, Sp X Den, Sp x Biom, Sp x Biom x Den

Ammophila


& Panicum

Fixed Effects Parameter Estimates 95% Upper Term Estimate Std Error DFDen t Ratio Prob>|t| 95% Lower Intercept 3.8990089 3.1981791 40.0 0.2299 -2.564911 10.362929 1.38 0.1739 -2.065507 11.087482 row[2-1] 4.5109874 3.2642836 44.5 row[3-2] -8.241661 3.5830539 51.1 -2.300.0256*-15.43466 -1.0486650.8600 -12.2187 10.239296 row[4-3] -0.989701 5.5786726 46.0 -0.18dry_weight_g 1.3576015 0.2225929 33.8 6.10 <.0001* 0.9051162 1.8100869 Random Coefficients Bedform volume Fixed Effects Tests varied by biomass F Ratio Prob > F Nparm DFNum DFDen Source 2.2111257 0.0987 row dry_weight_g 37.198194 <.0001

Results: Bedform Basal Area (mm²) Varied

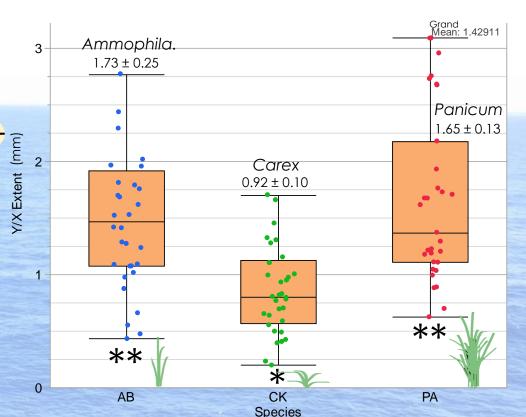
Mixed models with unbounded variance

- Box = random effect
- Fixed Effects: Density (Dens),
 Species (Sp), Biomass (Biom), Row
- Interactions: row, Sp X Den, Sp x Biom, Sp x Biom x Den

Mean: 5.06722

Ammophila & Panicum

Fixed Effects Parameter Estimates Term **Estimate** Std Error DFDen t Ratio Prob>|t| 95% Lower 95% Upper Intercept 3790.7732 937.90715 15.1 4.04 0.0011* 1792,7563 5788,7901 63.9 2.46 dry weight g 177.89644 72.395611 0.0167*33.263321 322.52956 Random Coefficients Bedform area **Fixed Effects Tests** varied by biomass Nparm DFNum Source DFDen F Ratio Prob > F dry_weight_g 63.9 6.0382353 0.0167*


Results: Bedform Shape Varied

Variable: Y/X

Wind flow Y

Mixed models with unbounded variance

- Box = random effect
- Fixed Effects: Density (Dens),
 Species (Sp), Row
- Interactions: row, Sp X Den

95% Upper

1.6261441

0.5507051

-0.235063

Fixed Effects Parameter Estimates Term Estimate Std Error DFDen t Ratio Prob>|t| 95% Lower Intercept 1.4382639 0.090165 20.3 15.95 1.2503838 <.0001* 19.3 2.24 0.2848091 0.1271592 0.0371*0.0189132 Species[AB]

20.1

-3.95

0.0008*

Random Coefficients

-0.498514

Fixed Effects Tests

Species[CK]

 Source
 Nparm
 DFNum
 DFDen
 F Ratio
 Prob > F

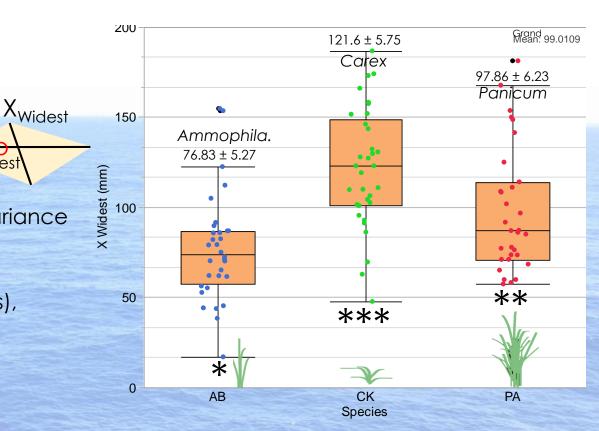
 Species
 2
 2
 20.3
 7.8613859
 0.0030*

0.1263196

Bedform Y vs. X extent varied as a function of species

-0.761965

* Plants with different number of * are significantly different


O denotes the peak, i.e. the crest, such that crest is X & Y intersection

Results: Bedform Shape Varied

Variable: X_{Widest} Wind flow

Mixed models with unbounded variance

- Box = random effect
- Fixed Effects: Density (Dens),
 Species (Sp), Row
- Interactions: row, Sp X Den

Fixed Effects Parameter Estimates

Term Estimate Std Error DFDen t Ratio Prob>|t| 95% Lower 95% Upper Intercept 98.16617 3.8453709 17.6 25.53 <.0001* 90.073856 106,25848 -21.78694 5.4566239 17.2 -3.99-33.29139 -10.28248Species[AB] 0.0009*Species[CK] 22.518667 5.4019634 17.3 4.17 0.0006*11.138964 33.89837

Random Coefficients

Fixed Effects Tests

 Source
 Nparm
 DFNum
 DFDen
 F Ratio
 Prob > F

 Species
 2
 2
 17.6
 11.152313
 0.0007*

Bedform max width varied as a function of species * Plants with different number of * are significantly different

O denotes the peak, i.e. the crest, such. The crest is not usually at the X & Y intersection for Y_{longest} and Y_{Widest}

Conclusions & Next Steps

1.No bedform formation beyond ripples without obstruction

1.Density did not affect bedform formation

1.Biomass & species affected bedform formation & shape

Direct application for management & modelling

Exist in perpetuity for local high school & academic use

- · Outside researchers welcome!
- Website: thewindtunnel.weebly.com
- Lesson plans for use to be developed
- Reproduce with staggered planting

20 sponsor/partner organizations

Over \$16K donated

140+ volunteer research hrs

Thank You

Sensor Intelligence.

Phoebe Zarnetske

INDUSTRIES

Thank You

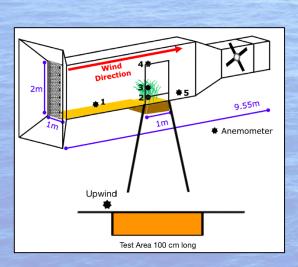
Sensor Intelligence.

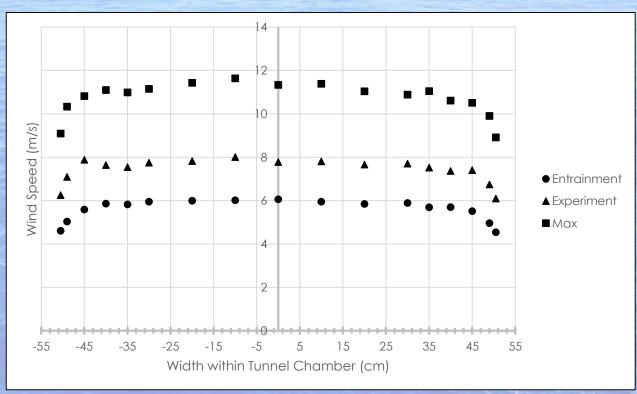
SAVE BARNEGAT BAY

Anthony Reo

Questions?

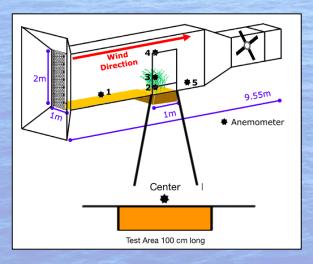
The Dune Goon. weebly.com bcharbon@sas.upenn.edu
@The Dune Goon

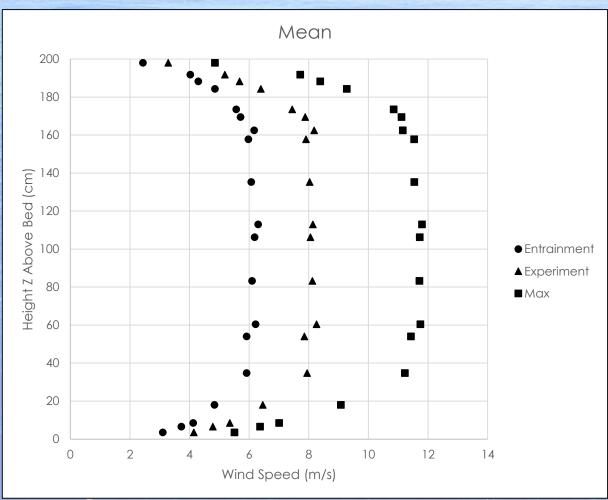

Results: Plant Morphology Varies By Species


		. O	<u> </u>	~ \	
N = 36 sp ⁻¹ Sp. Means ± S.E.		BROVZE	SILVERS	CO	
		Carex kobomugi CK	Ammophila breviligulata AB	Panicum amarum PA	Species Effect Test
	# leaves	x=17.6 ± 0.94	x=14.9 ± 1.26	x=59.7 ± 5.34	$F_{2,15} = 28.88 P < 0.0001$
	# stems	x=1.39 ± 0.09	x=4.17 ± 0.37	x=14.94 ± 1.17	F _{2,12} = 63.80, P < 0.0001
	Width of stems (cm)		x=3.72 ± 0.25	x=6.72 ± 0.41	$F_{1,11} = 27.19 P = 0.0002$
	Height (Straight: cm)	x=57.48 ± 0.89	x=75.29 ± 1.18	x=84.60 ± 1.76	F _{2,16} = 102.49, P < 0.0001
	Height (Bent: cm)	x=15.90 ± 0.85	x=58.27 ± 1.48	x=73.26 ± 1.77	F _{2,18} = 258.69, P < 0.0001
	Start Leaf on Culm (cm)		x=3.39 ± 0.34	x=5.81 ± 0.39	$F_{1,8} = 3.26, P = 0.11$
	Blades/culm	x=13.12 ± 0.49	x=3.88 ± 0.27	x=4.01 ± 0.15	F _{2,20} = 104.21, P < 0.0001
	Biomass (dry: g)		x=4.48 ± 0.42	x=11.91 ± 1.23	$F_{1,9} = 16.01, P = 0.0029$
	Avg Dry Biomass (g)	x=45.70 ± 6.89	x=57.40 ± 12.73	x=120.96 ± 60.32	$F_{2,20} = 11.11, P = 0.0006$

- Mixed models with unbounded variance
 - Box = random effect
 - Density & Species = fixed effect → Density was never a significant effect
- Avg Dry Biomass = total box biomass divided by # of plants per box

Horizontal Profile


Mean wind speed



Vertical Test Area Profile

Mean wind speed

Wind Tunnel Specs

- 1. 40 boxes + 1 with top panel to create continuous chamber
- 2. Wind Speed
 - Max Theoretical = 27.3 mph (12.2 m/s) \rightarrow Max actual = 27 mph (12.1 m/s)
 - 27 mph considered strong breeze (Beaufort Wind Scale)
 - Beyond this is near gale and gale force winds
 - Entrainment at 12.8 mph (5.7 m/s) → mild/moderate breeze (Beaufort Wind Scale)
- 3. Topo Scans SICK Trispector 1060 & wiredraw encoder
 - Standalone Class II laser, integrated data processing
 - Scans: W = 66 cm, L = 1.25 m, 2500 profiles X length-1
 - Factory calibrated, true mm values in all dimensions
 - Height resolution = 80 μm ... 670 μm precision

Methods: Wind Tunnel Trials

- 1. Plant morphology
- 2. Bobcat box onto platform, insert via pallet jack, seal box in
- 3. Sand added to box & 6m bed upwind to create a smooth 1" continuous bed of dry sand
- 4. Trial wind speed 18.5 mph (8.25 m/s) ground level for 30 min
 - Moderate breeze (Beaufort Scale)
- 5. Cut plants at base & harvest biomass
 - 1. Biomass per box & per scanned bedform
- 6. Topographic 3D scan→ profile every 0.42 mm
 - Pre- & post-scan
- 7. Post-trial box weight → around 1200lbs
- 8. Analyses of bedform morphology
 - Manual & tool guided with SICK SOPAS Engineering Tool

