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In this study, mathematical derivation and numerical verification of a wave transformation model in frequency domain
is discussed. This wave model is fully dispersive and nonlinear; and is derived based on the WKB assumptions.
Transforming the problem into the frequency domain and using multiple scale analysis in space and perturbation
theory, the model is expanded up to second order in wave steepness. This fully dispersive nonlinear wave model is a
set of evolution equations which explicitly contains quadratic near-resonant interactions. The comparison between the
presented model, the existing fully dispersive model and a nearshore model with different set of laboratory and field
data shows that the presented model provides significant improvements particularly at higher frequencies.
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INTRODUCTION
Early studies of nearshore waves originate from the modeling of Boussinesq equations (Boussinesq

1872). In these equations, both weak nonlinearity and weak dispersive effects of waves are taken into ac-
count for constant depth; dispersive and nonlinearity parameters are thus kept at first order. Later, Korteweg
and Vries (1895) developed a single equation for free surface elevation by combining two Boussinesq
equations for a one dimensional propagation of waves in a constant depth. Mei and Mehaute (1966) and
Peregrine (1967) developed Boussinesq type equations to investigate the effects of mildly varying depth.
By transforming the varying-bottom Boussinesq equations in frequency domain, Freilich and Guza (1984)
derived two nearshore nonlinear models (a "consistent" model and a "dispersive" model) for the shoaling
region where the water depth is approximately in the range of 3 to 10m. They also used the result of
Benney (1962) which used multiple scale expansion to formulate a series of equations which account for
significant energy exchange even in only near-resonant conditions. In an attempt to improve the disper-
sive characteristics of Boussinesq models, Madsen et al. (1991) developed two dimensional model in time
domain for constant depth by extending the velocity terms of Boussinesq equation using Taylor expansion
about the bottom and added convective terms to improve the depth limitations of Boussinesq type equations.
Moreover, Nwogu (1993) derived a new set of equations in time domain using the variable vertical velocity
instead of a constant averaged velocity. Madsen and Sorensen (1992) extended the Boussinesq equations for
mildly varying bottom slopes by developing linear shoaling properties of waves. In the frequency domain,
Liu et al. (1985) applied the parabolic approximation method of Radder (1979) to modify both Boussinesq
equations and KP (Kadomtsev and Petviashvili 1970) equation; The latter is a weak two-dimensional ex-
tension of the KdV equation. Chen and Liu (1995) established the frequency domain model for extended
Boussinesq equations of Nwogu (1993) and developed their fourth order equation using parabolic approx-
imation. Chen and Liu (1995) and Kaihatu and Kirby (1998) also extended the Boussinesq equations and
found the optimized parameters for shoaling and dispersive terms. Later, Bredmose et al. (2004) enhanced
the efficiency of the time domain Boussinesq models by applying Fast Fourier Transforms for calculation
of nonlinear interaction terms.

While the Boussinesq-based nearshore models show good agreement with data, it has restrictions for
application in deep water where the dispersiveness of the waves is a dominant feature. An alternative to the
Boussinesq equation approach involves nonlinear extensions to linear, fully dispersive wave model. The
fully dispersive nonlinear wave models have the ability to extend to intermediate and deep water. These
models can under certain conditions, replicate the features of Stokes-type waves in deep water (Kaihatu
2001). Bryant (1973) developed a model for long waves based on the boundary value problem and fully
dispersive features of waves and compared the model with KdV (Korteweg and Vries 1895) and Benjamin
et al. (1972) equations. To establish the mathematical formulation of the model, he assumed that waves
are periodic in space and nearly periodic in time and hence wave interactions are near resonant for lower
frequencies. He demonstrated that fully dispersive wave models support the nonlinear triad wave-wave
interaction. Moreover, Bryant (1974) demonstrated that the permanent form solution to his dispersive wave
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equation recovers the third order Stokes waves amplitudes (Kaihatu 2003). However, the assumption of
spatial periodicity is not useful for waves propagating over varying water depth. Mei and Unluata (1972);
Keller (1988); and Boczar-Karakiewicz et al. (1986) established a system of equations for interaction of
two small amplitude waves for a varying bottom based on boundary value problem. As waves propa-
gate from deep to shallow water region, the triad wave-wave interaction terms become more predominant
compare to those of quartet interaction (Agnon et al. 1993). Starting from the boundary value problem,
Agnon et al. (1993) derived a one dimensional fully dispersive model that includes triad wave-wave inter-
actions. Kaihatu and Kirby (1995) presented a two dimensional fully dispersive model using the parabolic
approximation method (Radder 1979). The nonlinear part of their model consists of the triad wave-wave
interactions between frequency components. Wave breaking dissipation rate term was also calculated us-
ing the approach of Mase and Kirby (1992) and included in the aforementioned model. Developing this
model into two dimensions, and assuming a periodic lateral domain, Agnon and Sheremet (1997) presented
a stochastic approach using bicoherence analysis to investigate the correlation between phases in nonlinear
quadratic terms. In addition, Kaihatu (2001); Eldeberky and Madsen (1999); and Eldeberky (2012) im-
proved the fully dispersive parabolic model by extending the relationship between free surface elevation
and velocity potential (used in developing the frequency domain model) up to second order. According
to this improvement the higher order statistics of waves can be estimated more accurately. More recent
studies for generating waves evolution equations in two dimension using the boundary value problem was
carried out by Janssen et al. (2006). Following Chu and Mei (1970); Liu and Dingemans (1989); Suh et al.
(1990), they expanded the free surface elevation and velocity potential and studied the effects of sub and
super harmonic bound waves. According to their model, both triad and quartet wave-wave interaction terms
were taken into account in the model; however during wave transition process from deep to shallow water
explicit shifting from one to another term is required (Tolman et al. 2013).

Although the fully dispersive nonlinear wave models do not have depth restriction such as many
Boussinesq-type models, they still do not have enough performance in predicting higher frequency energy
evolution (Ardani 2016). For instances, Eldeberky and Madsen (1999) does not add any improvements to
the model of Kaihatu and Kirby (1995). The hybrid model of Mase and Kirby (1992) performs well, how-
ever this model is not mathematically consistent. Moreover, despite the fact that the higher frequency part
of the spectra in the model of Mase and Kirby (1992) agrees well compare to other models, the performance
of this model in lower frequencies is not as good as the model of Kaihatu and Kirby (1995).

Briefly, the aim of this present work is to derive a transformation model for nearshore waves which
extends the model of Kaihatu and Kirby (1995) to improve the performance of the model in higher frequen-
cies. This study consists of developing a model that connects the deep water physics with those of shallow
water. This model is expected to be mathematically consistent, which means that the transformation of
energy from deep to shallow water and transitions between these asymptotes in intermediate water depth
matches properly. We will show that the model would be better able to estimate spectral density at high
frequencies. In section 2, we introduce the mathematical formulation of the proposed model in frequency
domain. The derivation is based on the boundary value problem for velocity potential, Φ; and the boundary
condition equations are extended up to the third order of nonlinearity (O(ε3)) where ε = ka, in which a is
the amplitude and k is the wave number. In section 3, we discuss the results; and evaluate the numerical
model using a wide range of laboratory and field datasets. We finally present the conclusion in section 4.

MATHEMATICAL DERIVATION OF THE MODEL IN FREQUENCY DOMAIN
Most of the previous nearshore models have some limitations for higher frequency bands and they are

not able to estimate higher order statistical parameters of waves accurately. To improve the performance
of nearshore models, we derive a model based on the boundary value problem and WKB assumptions.
Assuming the fluid is inviscid and irrotational, the boundary value problem for velocity potential in non-
dimensional form is formulated as

∇2
hφ + φzz = 0 − h < z < εη (1)

φz = −∇hh.∇hφ z = −h (2)

η + φt +
ε

2
[(∇φh)2 + φ2

z ] = 0 z = εη (3)

ηt − φz + ε∇hη.∇hφ = 0 z = εη (4)
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Where ∇ = (∂/∂x, ∂/∂y) and subscripts of time denote partial derivatives. φ and η are velocity potential
and free surface elevation respectively, h is the water depth and ε (ka, where a is the characteristic amplitude)
is the wave steepness or nonlinearity parameter. We expand the last two equations above, dynamic and
kinematic free surface boundary conditions respectively, using Taylor series about z = 0

η + φt + εηφzt +
ε2

2
η2φzzt +

ε

2
[(∇hφ)2 + φ2

z ] +
ε2

2
η[(∇hφ)2 + φ2

z ]z + HOT (5)

ηt − φz + ε∇hη.∇hφ − εηφzz −
ε2

2
η2φzzz +

ε2

2
η[∇hη.∇hφ] + HOT (6)

After combining the two free surface boundary conditions together, perturbation analysis, substituting
η = −φt and Laplace governing equation and dimensionalizing, the wave equation for each order is written
as,

φz = −
1
g

[φtt + −
1
2

(∇hφ)2
t + −

1
2

(φz)2
t −

1
2g

(φt)2
zt + ∇h.(φt∇hφ)] z = 0 (7)

Following the method of Smith and Sprinks (1975), the linear mild slope equation is constructed by
separation of the depth dependency term and summation of the solutions

φ =

∞∑
n=1

fn(kn, h, z)Φ̃n(x, y, kn, ωn, t) (8)

and

fn =
cosh kn(h + z)

cosh knh
(9)

where fn is the depth dependency term, kn in the total wave number and ωn is the angular frequency.
Moreover, Kaihatu and Kirby (1995) applied Green’s second identity to fn and Φ̃n as follows

∫ 0

−h
{ fnΦ̃n − Φ̃n fnzz} dz = [ fnΦ̃nz − Φ̃n fnz]0

−h (10)

Plugging fn(0) = 1 and Substituting the boundary condition equation (equation (7)) into (10), the
primary form of the equation is written as

second order:

1
g

Φ̃ntt + F1Φ̃n − ∇.[F2∇Φ̃n] = −
1
g

[1
2

(∇hΦ̃n)2
t +

1
2

(Φ̃nz)2
t −

1
2g

(Φ̃nt)2
zt + ∇h.(Φ̃nt∇hΦ̃n)

]
(11)

where

F1 =
1

cosh2 knh

[cosh 2knh
4kn

−
1

4kn
−

h
2

]
(12)

F2 =
1

cosh2 knh

[cosh 2knh
4kn

−
1

4kn
+

h
2

]
(13)

The nonlinearity in the model occurs due to the existence of velocity potential products in the boundary
condition equations and consequently, yields the products of amplitudes. The nonlinear terms at right-hand
side of (11), are treated as triad wave-wave interaction to exchange energy among frequencies. Herein, two
arbitrary frequency modes, l and m are chosen
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1
g

Φ̃ntt + F1Φ̃n − ∇.[F2∇Φ̃n] =

1
2

[∑
l

∑
m

{kl tanh klh + km tanh kmh
g

(Φ̃lt Φ̃mt )t

− (kl tanh klh)(km tanh kmh)(Φ̃lΦ̃m)t

}
−

∑
l

∑
m

{
[∇nΦ̃l.∇nΦ̃m]t + ∇n.[Φ̃lt∇nΦ̃m]

+ ∇n.[Φ̃mt∇nΦ̃l]
}]

(14)

In order to split up the spatial quantities (quantities that are dependent on x), the multiple scale analysis
is used. One of the advantages of multiple scale analysis is that the quantity is physically separated at each
order. It is assumed that the spatial variable is defined for different scales

x = x + ε x (15)

x = x + X1 (16)

Therefore, for each order, there are some other terms in the equations obtained by slow varying as-
sumption of x that has not been shown here. According to Freilich and Guza (1984), the amplitude and
phase function is assumed to vary slowly in x. Hence the solutions for each order is defined in the following
form

Φ̃1n =
−ig
2ωn

an(X1)eiΨn (17)

where Ψn = ψn(x)−ωnt. This is referred to as a “phase function” and includes both spatial and temporal
terms. The real-valued amplitude is an.

The time periodicity will be canceled out by taking Fourier series in time

Φ̃n =
φ̃n

2
e−iωnt +

φ̃∗n
2

eiωnt (18)

After eliminating the time dependency, the second order triads, (equation (14)), is written as

1
g
ω2φ̃n − F1φ̃n + ∇.[F2∇φ̃n] =

−i
4g

[ n−1∑
l

{
2ωn∇nφ̃l.∇nφ̃n−l + ωlφ̃l∇

2
nφ̃n−l + ωn−lφ̃n−l∇

2φ̃l

+
[kl tanh klh + kn−l tanh kn−lh

g
(ω2

l ωn−l + ωlω
2
n−l)

+ ωn.(kl tanh klh)(kn−l tanh kn−l)
]
φ̃lφ̃n−l

}]
n

−
i

2g

[ N−l∑
l

{
2ωn∇nφ̃

∗
l .∇nφ̃n+l + ωn+l∇

2
nφ̃
∗
l − ωlφ̃

∗
l∇

2φ̃n+l

+
[kl tanh klh + kn+l tanh kn+lh

g
(ω2

l ωn+l − ωlω
2
n+l)

+ ωn.(kl tanh klh)(kn+l tanh kn+l)
]
φ̃∗l φ̃n+l

}]
n

(19)

The velocity potential for second and third orders is further defined as
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Figure 1: Comparison of Chapalain et al. (1992) experiment with real amplitude model, Kaihatu and Kirby
(1995) mild slope model and the consistent model of Freilich and Guza (1984), h = 0.4m and T = 2.5S

φ̃1n =
−ig
ωn

a(X1)eiψ (20)

where ψ = ψn(x) =
∫

kn dx. Following the method of Freilich and Guza 1984, the first and second
spatial derivatives of ψ in second order is written as,

dψn

dx
= k + ε k1 (21)

d2ψn

dx2 = ε
dk

dX1
(22)

where k is the linear or reference wave number and it is defined using the linear dispersion relation

ω2
n = gk tanh kh (23)

In (21), k1 is the modified wave number due to bottom slope.
By substituting (20), (21) and (22) into (19) and combining linear and nonlinear terms
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Figure 2: Mase and Kirby (1992) experimental setup

2F2akk1 + 2iF2k
da
dx

+ iF2
dk
dx

a + iF2xak =

n−1∑
i=1

Ralan−lei(ψl+ψn−l−ψn)

+

N−n∑
i=1

2S alan+lei(ψn+l−ψl−ψn) (24)

where

R =
ωn

ωl.ωn−1
[2ωnklkn−l + ωlk2

n−l + ωn−lk2
l − (

kl tanh klh + kn−l tanh kn−lh
g

).

(ω2
l ωn−l + ωlω

2
n−l) − ωn(kl tanh klh).(kn−l tanh kn−lh)] (25)

S =
ωn

ωl.ωn+1
[2ωnklkn+l + ωlk2

n+l − ωn+lk2
l + (

kl tanh klh + kn+l tanh kn+lh
g

).

(ω2
l ωn+l − ωlω

2
n+l) + ωn(kl tanh klh).(kn+l tanh kn+lh)] (26)

dk
dx is calculated analytically by differentiating the linear dispersion relation

dk
dx

=
dh
dx

(
−k

2
sinh−2 kh

tanh kh + kh
) (27)

where dh
dx is the variation of bathymetry and it is calculated for each step using the first order finite

difference schemes.
Since an in the above equation is real valued, the equation is divided into real and imaginary part and

finally, the resulting system of equations are solved numerically. The homogeneous part of this second
order solution is cancelled out since it has been already considered once in the first order solution. The real
part of the equation (24) is used to calculate k1 and the imaginary part is solved for a

k1 =
1.

2F2ak

[ n−1∑
i=1

Ralan−l cos(ψl + ψn−l − ψn)

+

N−n∑
i=1

2S alan+l cos(ψn+l − ψl − ψn)
]

(28)
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Figure 3: Comparison of Mase and Kirby (1992) experiments (gauges 1-6) with real amplitude model and
the mild slope model of Kaihatu and Kirby (1995)

and

da
dx

+ (
1

2k

dk
dx

+
F2x

2F2
)a =

−i

2F2k

[ n−1∑
i=1

Ralan−l sin(ψl + ψn−l − ψn)

+

N−n∑
i=1

2S alan+l sin(ψn+l − ψl − ψn)
]

(29)

One problem with incorporation of energy dissipation mechanism based on wave statistics (e.g. Thorn-
ton and Guza 1983) is that some ad hoc means of specifying the frequency dependence of the mechanism
is required. This is because these models usually assume that the wave field is narrow-banded, in which a
single average frequency is considered sufficiently descriptive. Mase and Kirby (1992) provided arguments
for using a frequency-squared dependence, while Eldeberky and Battjes (1996) assume that the dissipation
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Figure 4: Comparison of Mase and Kirby (1992) experiments (gauges 7-12) with real amplitude model and
the mild slope model of Kaihatu and Kirby (1995)

is constant over frequency. Both provide evidence for the frequency-squared distribution, but Kirby and
Kaihatu (1996) note that the inability to easily model wave motions up to the Nyquist frequency might
affect how well this particular distribution would work.

Following Kirby et al. (1992), Mase and Kirby (1992) and Kaihatu and Kirby (1995), a dissipation
term, αnan, is added to the linear part of the evolution equation (equation (29)) to have a better estimation
of waves in the surf zone. The dissipation term αn is

αn = αn0 + (
fn

fpeak
)2αn1 (30)

αn0 = Fβ(x) (31)

αn1 = (β(x) − αn0)
f 2
peak

∑N
n=1 |An|

2∑N
n=1 f 2

n |An|
2

(32)
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Figure 5: Bowen and Kirby (1994) experimental setup

β(x) =
3
√
π

4
√

gh

B3 fpeakH5
rms

γ4h5 (33)

Hrms = 2

√√√ N∑
n=1

|An|
2 (34)

where β is the energy dissipation rate as dictated by Thornton and Guza (1983), fpeak is the peak
frequency, f is the frequency component and B, γ and F are free parameters; F denotes the frequency
dependency of the dissipation term. According to Kaihatu and Kirby (1996), F = 1.0 determines that there
is no dependence on frequency for dissipation, while F = 0 leads to an f 2

n dependency for dissipation. Later,
Kaihatu et al. (2018) indicated that the value of F may be affected by truncating the modeled frequency
components below the Nyquist limit. In this study, the frequency dependency parameter for all laboratory
and field tests was chosen to be F = 0 to have the full dependency of dissipation to frequency.

NUMERICAL ANALYSIS AND RESULTS
Verification of the model using Harmonic test of Chapalain et al. (1992)

Early experiment on nonlinear wave-wave interactions was carried out by Boczar-Karakiewicz et al.
(1987) for exchanging energy between the first and second harmonics. Chapalain et al. (1992) investigated
the energy exchange between first four harmonics for weakly nonlinear and dispersive long waves for a
constant depth. This experimental model is simple but useful way to make sure about the performance
of the numerical model. To verify the ability of the model in terms of transferring the energy into higher
harmonics, the experimental tests of the Chapalain et al. (1992) was compared with the numerical wave
model. In order to replicate their model, the bottom variation is turned off from the model and the first
four harmonics has chosen for the comparison. Figure 1 shows the comparison of three models; model of
Kaihatu and Kirby (1995), consistent model of Freilich and Guza (1984) and the real amplitude model with
test A of this experiment. It is apparent that the model of Freilich and Guza (1984) underpredicts the free
surface amplitudes for all test cases and harmonics. The model of Kaihatu and Kirby (1995) shows better
agreement with the data compare to the other two models. This discrepancy between the model of Freilich
and Guza (1984) and the experimental data probably is due to the violation of shallow water limit that
governs this model. The pursuit model shows a high degree of oscillation at the third and fourth harmonics,
which might suggest that splitting of the wave number into components with different scales of variability
might not be appropriate for this case and more investigation is required.

Comparison of the model with laboratory datasets for random waves
For comparison to experiment, the time series at the initializing gage is required. By running the model,

the complex Fourier components is obtained for each gage location and each realization. The power spectra
is calculated using the real and imaginary parts of the Fourier components. Bartlett averaging is used to
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Figure 6: Comparison of Bowen and Kirby (1994) experiments with real amplitude model, Kaihatu and
Kirby (1995) mild slope model and the consistent model of Freilich and Guza (1984)
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Figure 7: Schematic view of Duck 94 experiment, U.S. Army Field Research Facility at Duck, North Car-
olina, USA (Birkemeier and Thornton 1994), Left: Plan view; Right: Section view

take the average of the calculated power for all realizations. Band averaging is used further to reduce the
noise in the power spectrum and smooth the spectral estimate.

To test the model performance, we use two laboratory experimental data sets. The results from Mase
and Kirby (1992), who conducted a set of experiments in two cases for investigation of shoaling and break-
ing characteristics of random waves. Case 2 of this experiment is a most suitable one for testing dispersive
models because the relative depth is high enough (kh = 1.9) and is outside the shallow water range (Kaihatu
and Kirby 1995). This is rigorous test for dispersive wave models. Figure 2 shows the experimental setup
of Mase and Kirby (1992). In this experiment, the free surface elevation has been measured in the sampling
rate of 20 Hz. The dataset is divided into 7 realizations and each realization has 2048 data points. The peak
frequency of the free surface spectra is 1 Hz and the total number of frequency components taken for this
analysis is 400. Figures 3 and 4 compares the laboratory measurement with the real amplitude model and
the model of Kaihatu and Kirby (1995).

The comparison of models shows that the real amplitude model agrees very well with the data. The dif-
ference between this model and the model of Kaihatu and Kirby (1995) shows that the real amplitude model
has a significant improvements in resolving higher frequencies particularly at nearshore gages compare to
other model.

The second dataset is that of the Bowen and Kirby (1994) which is used to analyze the behavior of the
model with the smaller range of relative water depth. Figure 5 shows the experimental setup of Bowen and
Kirby (1994).This data set, herein after BK94, provides three different wave conditions. The free surface
elevation was measured at 47 gages with the sampling rate of 25 Hz for the duration of 17 min. The dataset
is divided into 12 realizations with 2048 data points in each. Case B of BK 94 is used for this comparison.
In this case, the Hrms and the peak frequency, fp are 0.08 m and 0.225 Hz respectively. Figure 6 compares
real amplitude models; the model of Kaihatu and Kirby (1995) and the model of Freilich and Guza (1984)
with the experimental dataset.

The results of the comparisons show that the real amplitude model works reasonably well. Although the
model of Freilich and Guza (1984) compares better for the lower frequency (nearshore part of the spectra),
the real amplitude model has a better agreement at higher frequencies in more nearshore gage locations
compare to other two models.

Comparison of the model with field dataset in terms of spectra
In addition to compare the models with experimental dataset, the model is verified using field data

from the Duck 94 experiment which was conducted at the U.S. Army Field Research Facility at Duck,
North Carolina, USA in the fall of 1994 (Birkemeier and Thornton 1994). Figure 7 shows the schematic
view of the Duck 94 experimental field. The field experiments capture a wide range of conditions than seen
in the laboratory. In this test, we examine in detail the accuracy of the model for different cases of wave
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Figure 8: Comparison of Duck94-09030100 field dataset with real amplitude model, Kaihatu and Kirby
(1995) mild slope model and the consistent model of Freilich and Guza (1984)-400 frequency components

height and peak frequency. Figure 8 presents the comparison of nearshore wave models with Duck 94 field
data for 400 retained frequency components that is carried out for 3 September 1994 at 0100 Hrs EST. It is
clearly seen that the real amplitude model for this case, predicts the behavior of the waves better than other
models particularly for nearshore gages at higher frequencies.

CONCLUSION
The aim of the present study was developing a fully dispersive wave model that improves the prediction

of high frequency tail of the wave spectra. To do this, we have derived a deterministic model based on the
reformulation of the dispersive model of Kaihatu and Kirby (1995). This frequency domain model includes
the triad wave-wave interaction terms in the second order. To take into account the dissipation mechanism
due to the breaking waves, the dissipation term based on the formulation of Thornton and Guza (1983) was
added to the model.

The developed model (also called real amplitude model) has been verified numerically using the com-
parisons with either experimental or field data. The comparisons of free surface elevation amplitude for
the first four harmonics with the experimental data of Chapalain et al. (1992) demonstrate that the real
amplitude model has relatively good agreement with observed data.

The comparisons of the model-predicted spectra with laboratory experiments shows that the model
accurately predicts the high frequency tail of spectra compare to the model of Kaihatu and Kirby (1995)
and the consistent model of Freilich and Guza (1984). The variety of test cases for different wave conditions
confirms that the model is verified to predict wave conditions with a wide range of Ursell numbers.
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