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Motivation

• Critical infrastructure failed during recent major 

flooding events.

• A need to revaluate the current methods of 

addressing loading within these events (Nistor et 

al., 2009).

• Emphasis placed on a probabilistic approach to 

addressing tsunami hazards.

• Led to the development of new standards focused 

on tsunami engineering:

• SMBTR (2005)

• FEMA P646 (2012)

• ASCE7 Chapter 6 (2016) 

2004 Indian Ocean Tsunami

2011 Tohoku Tsunami

2017 Hurricane Maria
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Debris Hazard Assessment

• Eurocode 1: Accidental Actions
• Analogous situations

• Vessel impacting a bridge pier.

• Vehicle crashing into a structure.

• Focusing on debris impact 

(Haehnel and Daly, 2004).

• Need to address
• Probability of impact occurring.

• Debris impact velocity.

• Fit within the current ASCE7 

Chapter 6 model (Naito et al., 

2014).

𝐹 = 𝑈 𝑘𝑚
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Objectives
• Validate a stochastic model for 

assessing debris velocity in extreme 

flooding events.

Novelty
• Develop an understanding of the 

evolution of debris hazards within 

an event.
• Current models assume debris 

velocity is equal to local 

maximum velocity.

• A more physically relevant debris 

hazard model for application to 

standards and fragility curve 

analysis.



Experimental Setup
• The experiments were performed in 

the University of Ottawa dam-break 

flume.

• 30 m × 1.5 m × 0.70 m
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Experimental Protocol

• Investigated several variables:
• Number of Debris

• Impoundment Depth

• Initial Configuration

• Debris Material

• Minimum of 10 repetitions per 

experimental condition.

Impoundment Depth 

(ℎ0)  

[m]

Number of Debris 

(𝑁) 

[-]

Debris Orientation 

(𝜃) 

[o]

Repetitions 

[#]

0.40 1 0 20

0.20 1 0 10

0.40 1 90 20

0.40 3 0 10

0.20 3 0 10

0.40 6 0 20

0.20 6 0 20

0.40 12 0 20

0.20 12 0 20

• For a single debris, spreading 

characteristics (Stolle et al., 2018):
• Mean: ~ 0.00 m

• Standard Deviation: ~ 0.06 m
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Probability of correctly 

rejecting null hypothesis



Debris Tracking

• Based on the object tracking algorithm 

from Stolle et al. (2016).
• Limited by the number of container needed 

to be tracked.

• Focus on the identification of the 

individual containers.
• Limit the need to maintain unique 

identifier of the individual containers.

• Disadvantage:

• Lose the individual information related to 

the debris:

• Trajectory

• Velocity

• Orientation
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Hydrodynamics

WG2

WG5

WG6

Wave Front Celerity (c)
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𝑐 = 𝛼 𝑔ℎ0



Debris Velocity

ℎ0 = 0.40 m

ℎ0 = 0.20 m

𝑈 = 𝑐 −
𝐶𝑑𝜌𝑤𝐴𝑑

2𝑛𝑚𝑑
𝑡 +

1

𝑐

−1
(Shafiei et al., 2016; Stolle et al., 2017)
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𝑐 = 1.09 𝑔ℎ0

• Due to limitations of the tracking algorithm, 

the velocity was evaluated as the average 

velocity of the group.

Mean Velocity

Standard Deviation



Debris Velocity Distribution

• One of the most challenging aspects of 

debris transport is the stochastic nature of 

debris transport (Matsutomi, 2009).

• Lin and Vanmarcke (2010) developed a 

statistical model for assessing debris 

transport in extreme wind events.

Mean Velocity

 𝑈 =
𝑈

𝑐
= 1 −

𝐶𝑑𝜌𝑤𝐴𝑑
2𝑛𝑚𝑑

𝑐𝑡 + 1

−1

Dispersion

𝜂 = max
1

 𝑈
,

1

1 −  𝑈
+ 𝛾

• Used a two-parameter Beta Distribution, due to 

its bounded nature [0,1], for single debris.

• Where:

𝑎 =  𝑈𝜂
𝑏 = (1 −  𝑈)𝜂

• Fitted using a Root-mean squared error 

evaluation:
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Free Parameter



Application to Debris Guidelines

• Debris velocity is the only 

parameter in the impact 

equation considering the 

hydraulic conditions:

𝐹 = 𝑈 𝑘𝑚

• The Beta distribution can be 

used to estimate the likelihood 

of exceedance.
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Probability that the impact force (𝐹𝑖) 
will exceed design magnitude.



Conclusions

• The maximum debris velocity can be 

estimated using the wave front velocity.
• For an idealized case, does not consider 

flow accelerations due to obstacles or 

topography.

• The debris velocity profile dependent on 

the number of debris present.
• Limitations regarding the initial 

entrainment of the debris.

• Using the Lin and Vanmarcke (2010) 

model, the probabilistic debris velocity 

profile can be estimated using a Beta 

distribution.

Next Steps
• Extend the single debris model to the 

multiple debris by considering the debris-

debris interaction.

• Develop the model considering the 

spreading of debris for a detailed debris 

hazard assessment.
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Thank you for your attention!

Jacob Stolle, M.A.Sc., EIT

University of Ottawa

Email: jstol065@uottawa.ca
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