

#### 36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

The State of the Art and Science of Coastal Engineering







#### Probabilistic Investigation of Debris Impact Velocities During Extreme Flooding Events

Jacob Stolle, MASc, EIT

Department of Civil Engineering, University of Ottawa, Canada

Co-authors:

Ioan Nistor, Professor, University of Ottawa Emil Petriu, Professor, University of Ottawa Nils Goseberg, Professor, TU Braunschweig





NHK (2011)



## Motivation

- Critical infrastructure failed during recent major flooding events.
- A need to revaluate the current methods of addressing loading within these events (Nistor et al., 2009).
- Emphasis placed on a probabilistic approach to addressing tsunami hazards.
- Led to the development of new standards focused on tsunami engineering:
  - SMBTR (2005)
  - FEMA P646 (2012)
  - ASCE7 Chapter 6 (2016)





36TH INTERNATIONAL CONFERENCE

Baltimore, Maryland | July 30 - August 3, 2018

ENGINEERING 2018

ON COASTAL

## **Debris Hazard Assessment**

- Eurocode 1: Accidental Actions
  - Analogous situations
    - Vessel impacting a bridge pier.
    - Vehicle crashing into a structure.
- Focusing on debris impact (Haehnel and Daly, 2004).
- Need to address
  - Probability of impact occurring.
  - Debris impact velocity.
- Fit within the current ASCE7 Chapter 6 model (Naito et al., 2014).





## **Experimental Setup**

- The experiments were performed in ٠ the University of Ottawa dam-break flume.
  - $30 \text{ m} \times 1.5 \text{ m} \times 0.70 \text{ m}$ •

LVDT\_

0.80 m

1.50 m

0.20 m



-30.00 m·





#### **36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018** Baltimore, Maryland | July 30 - August 3, 2018

5/14

### **Experimental Protocol**

- Investigated several variables:
  - Number of Debris
  - Impoundment Depth
  - Initial Configuration
  - Debris Material
- Minimum of 10 repetitions per experimental condition.

| Impoundment Depth         | Number of Debris | <b>Debris Orientation</b> | Repetitions |
|---------------------------|------------------|---------------------------|-------------|
| ( <i>h</i> <sub>0</sub> ) | ( <i>N</i> )     | (	heta)                   | [#]         |
| [m]                       | [-]              | [0]                       |             |
| 0.40                      | 1                | 0                         | 20          |
| 0.20                      | 1                | 0                         | 10          |
| 0.40                      | 1                | 90                        | 20          |
| 0.40                      | 3                | 0                         | 10          |
| 0.20                      | 3                | 0                         | 10          |
| 0.40                      | 6                | 0                         | 20          |
| 0.20                      | 6                | 0                         | 20          |
| 0.40                      | 12               | 0                         | 20          |
| 0.20                      | 12               | 0                         | 20          |



- For a single debris, spreading characteristics (Stolle et al., 2018):
  - Mean: ~ 0.00 m
  - Standard Deviation: ~ 0.06 m

**36TH INTERNATIONAL CONFERENCE** 

ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 – August 3, 2018



#### 7/14

## **Debris Tracking**

- Based on the object tracking algorithm from Stolle et al. (2016).
  - Limited by the number of container needed to be tracked.
- Focus on the identification of the individual containers.
  - Limit the need to maintain unique identifier of the individual containers.
- Disadvantage:
  - Lose the individual information related to the debris:
    - Trajectory
    - Velocity
    - Orientation



CCF

2018

-500 0 500 X-Direction [mm]

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

0

X-Direction [mm]

500

Baltimore, Maryland | July 30 - August 3, 2018

-500







#### **Debris Velocity Distribution**

- One of the most challenging aspects of debris transport is the stochastic nature of debris transport (Matsutomi, 2009).
- Lin and Vanmarcke (2010) developed a statistical model for assessing debris transport in extreme wind events.

- Used a two-parameter Beta Distribution, due to ٠ its bounded nature [0,1], for single debris.
- Where: •

$$a = U\eta$$
$$b = (1 - \overline{U})\eta$$

Fitted using a Root-mean squared error • evaluation:





#### **Application to Debris Guidelines**

• Debris velocity is the only parameter in the impact equation considering the hydraulic conditions:

$$F = U\sqrt{km}$$

• The Beta distribution can be used to estimate the **likelihood** of exceedance.



Probability that the impact force  $(F_i)$ 



#### Conclusions

- The maximum debris velocity can be estimated using **the wave front velocity**.
  - For an idealized case, does not consider flow accelerations due to obstacles or topography.
- The debris velocity profile dependent on the **number of debris** present.
  - Limitations regarding the initial entrainment of the debris.
- Using the Lin and Vanmarcke (2010) model, the probabilistic debris velocity profile can be estimated using a Beta distribution.

## **Next Steps**

- Extend the single debris model to the **multiple debris** by considering the debris-debris interaction.
- Develop the model considering the **spreading of debris** for a detailed debris hazard assessment.



# Thank you for your attention!

Jacob Stolle, M.A.Sc., EIT University of Ottawa Email: jstol065@uottawa.ca

#### References

Chock, G.Y., (2016). Design for tsunami loads and effects in the ASCE 7-16 standard. Journal of Structural Engineering 04016093.

Haehnel, R.B., & Daly, S.F., 2004. Maximum impact force of woody debris on floodplain structures. *Journal of Hydraulic Engineering* 130, 112–120.

Matsutomi, H. (2009). Method for estimating collision force of driftwood accompanying tsunami inundation flow. *Journal of Disaster Research*, 4(6), 435–440.

Naito, C., Cercone, C., Riggs, H. R., & Cox, D. (2014). Procedure for site assessment of the potential for tsunami debris impact. *Journal of Waterway, Port, Coastal and Ocean Engineering*, 140(2), 223–232.

Nistor, I., Nouri, Y., Palermo, D., & Cornett, A., 2009. Experimental investigation of the impact of a tsunami-induced bore on structures, in: *Proceedings Coastal Engineering Conference*. pp. 3324–3336.

Shafiei, S., Melville, B.W., Shamseldin, A.Y., Beskhyroun, S., & Adams, K.N., 2016. Measurements of tsunami-borne debris impact on structures using an embedded accelerometer. *Journal of Hydraulic Research* 54, 1–15.

Stolle, J., Nistor, I., & Goseberg, N. (2016). Optical Tracking of Floating Shipping Containers in a High-Velocity Flow. *Coastal Engineering Journal*, 1650005.

Stolle, J., Goseberg, N., Nistor, I., & Petriu, E. (2018). Probabilistic Investigation and Risk Assessment of Debris Transport in Extreme Hydrodynamic Conditions. *Journal of Waterways, Ports, Oceans and Coastal Engineering*, 144(1), 04017039.

Stolle, J., Nistor, I., Goseberg, N., Mikami, T., & Shibayama, T. (2017). Entrainment and Transport Dynamics of Shipping Containers in Extreme Hydrodynamic Conditions. *Coastal Engineering Journal*, 59(3), 1750011.

