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Motivation and Goals

To develop a surface-groundwater flow model
to better understand the effects of seepage on
swash hydro-morphodynamics.

Validation of the model is by comparing the
numerical results against the BARDEX II
prototype-scale experiment.
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Governing Equations

Nonlinear shallow water equations
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Laplace’s equation

∇ · φ = 0, (3)

φ = h+ zb,

∇ =
∂2

∂x2
+

∂2

∂z2
.

q = −k∂φ
∂n

(4)

Variables involved

h is water depth, u is velocity, zb is bed level, q is seepage, k is
permeability, τ is bed shear stress, ρw is water density, x is
horizontal axis, z is vertical axis, t is time
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BBL sub-models with seepage
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BBL model based on Cheng and Chiew
(1998)

and Chen and Chiew (2004)

U(z) =
u∗
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τ = ρwu
2
∗ (6)

Variables involved

u∗ is friction
velocity, κ is von
Karman constant,
z0 is velocity
profile origin, τ is
shear stress, us is
slip velocity
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Coupled surface-groundwater flow model

TVD−MCC scheme 
Briganti et al. (2012)

Runge−Kutta scheme (4th order)

BIEM scheme
Liggett and Liu (1983)
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The BARDEX II experimental set-up (Delta flume,
Deltares, Netherlands)
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Wavemaker at x = 0 m, Hs = 0.8 m and Tp = 8 s
2 test cases: A2 (sea level < lagoon level), A4 (sea level >
lagoon level)
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Numerical model set-up
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Surface flow model: ∆x = 0.01 m, Lx = 56.5 m, CN = 0.5,
hmin = 1× 10−3 m , d50 = 0.43 mm, pb = 0.4, k = 8× 10−4 ms−1

Groundwater flow model: ∆lcosα = 50∆x m where tanα = dzb
dx

(sea-side), ∆l = 0.5, 0.25, 0.5 m (other sides)
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Phreatic surface validation - without waves
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Pore velocities below the beach - without waves
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Surface flow validation - with waves
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Surface flow validation - with waves
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Phreatic surface validation - with waves
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Phreatic surface validation - with waves
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Pore velocities below the beach - with waves
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Exfiltration on BBL
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1 increases BBL
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2 decreases bed shear
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Infiltration on BBL
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Conclusion

Model is capable of simulating barrier beach
groundwater dynamics with reasonable
accuracy.

Exfiltration reduces bed shear stress due to
thickening of boundary layer.

Infiltration increases bed shear stress due to
thinning of boundary layer.
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