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Outline

• Motivation
– Kamaishi breakwater during the 2011 Japan 

tsunami

– CFD simulation of forces on the Kamaishi
breakwater

• Cavity sub-pressure
– Laboratory experiment

– Integral conservation of momentum

• Necessary steps



Kamaishi Bay

Source: MLIT



Kamaishi breakwater plan



Damage to breakwater 
• Caissons displaced toward land
• Rubble mound experienced scour (Arikawa et. al., 

2011)
• From overtopping flow
• From flow through gap between caissons

• Bearing capacity exceedance (Bricker et al., 2013)

Multibeam SONAR - Tomita et. al., 2012
ocean

harbor



OpenFOAM free surface simulation 
(Bricker et al., 2013)

Standard k-epsilon turbulence model

Standard k-epsilon turbulence model in water, 
no turbulence in air

 However, experiments (Mitsui et al, 2012) 
show the overtopping jet does not pull up 
close to the caisson.

 Possible reason: Continuous eddy viscosity 
across air-water interface used by VOF allows 
too much entrainment of air into the 
impinging jet (an area of strong turbulence).

 Solution: reduce eddy viscosity at interface by 
neglecting all turbulence in the air phase.



OpenFOAM simulation result (Bricker et al., 2013)

Lift
Drag

Overturning moment Bearing stress

Uezono & 
Odani (1987)

Design limit, 
Goda (2010)

Getting nappe behavior right is important for getting forces right!



Development of ∆𝐹

Depressed nappeFree nappeClinging nappe

Air entrainment from 

the cavity

Vimp

Cavity

∆F will increase the sliding force acting on the caisson affecting the stability

Non-aerated

Aerated

Nappe types



Flume

Inlet

Caisson

Adjustable weir

outlet

To atmosphere

Geometric scale= 1:150

Laboratory physical model
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Measured nappe sub-pressure



x-direction integral momentum equation over control volume
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Theoretical nappe sub-pressure from momentum conservation over integral control volume



Effect of density ρeff = 800 kg/m3 in non-aerated case
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Non-aerated jet trajectory
Tan (1984) via Chanson (1996) considered vertical component of subpressure-induced 
acceleration in ballistic trajectory, but here consider both components.



Non-aerated nappe trajectory

Test 3 Test 10



Conclusions

• Cavity sub-pressure affects jet trajectory and 
forces on caisson

• CFD models have difficulty modeling this due 
to bubbling and air entrainment

• The water column under a non-aerated nappe 
may have a lower density than under an 
aerated nappe due to bubbling



Future work
• Measure cavity sub-pressure directly 
• Develop a relation between overflow surcharge 

and cavity sub-pressure, building on Chanson 
(1996)

• Extend to unsteady flows
• Investigate what is needed in CFD to get this right 

(2-D vs. 3-D simulations, turbulence models, 
bubble physics)

2D 3D slice



Future Work

• 3D simulation

• Contracted nappe, air enters at sides

• Is that all?


