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Introduction

Hurricanes are four out of five costliest natural disasters in 

U.S. history:
1. Hurricane Katrina, 2005

2. Hurricane Harvey, 2017

3. Hurricane Sandy, 2012

4. Hurricane Andrew, 1992

5. Los Angeles earthquake, 1994

Three out of five costliest

hurricanes occurred in 2017

Source: Enki Research Group



3

Introduction

Coastal Storm Impacts on Infrastructure 

Strom Surge Flooding
Hurricane Ike (2008), 
Galveston, TX

Structural Damage due to Waves
Hurricane Ike (2008), Galveston, TX

Precipitation-driven flooding
Hurricane Harvey (2017), 

Houston, TX
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Introduction

• Storm tide levels

Wind stress

Wave setup

Current tides

Tide level

• Tailwater level in 

stormwater infrastructure

• Precipitation intensity

• Infiltration 

What processes affect urban flooding? 



Study Area

 The low-lying region of Hampton Roads, Virginia in the U.S. 

Mid-Atlantic Coast

• Highest rate of relative sea level rise (SLR) in U.S. East Coast 

(~7 mm/yr, Boon et al. (2010)) 

• Highly urbanized with population 1.7 million

• 10th in the world in terms of assets vulnerable to SLR 

• Largest naval base in the world

 Number of recurrent flooding events has been increased due 

to relative sea level rise (SLR) and regional ocean dynamics
5

Norfolk
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Hurricane Joaquin (2015)

Storm Surge at Norfolk: 1.1 m

Study Area
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Hurricane Harvey (Texas, 2017)

Maximum Storm Surge at Galveston, TX: 0.81 m

Hurricane Sandy (2012)

Maximum Storm Surge at Battery, NY: 2.86 m

Storm Surge flooding was dominant during Sandy while 

precipitation-driven flooding was dominant during Harvey

Introduction



Storm Surge Model: Hydrodynamic+Wave Model

Delft3D Modeling suite (D-Flow+SWAN)

Urban Flooding Model: 2D Hydrodynamic TUFLOW model

Coupling Workflow
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Delft3D-FLOW: 

Depth-Averaged Continuity and Navier-Stokes Equations:

Governing Equations-Storm Surge Model
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Delft3D-Wave (SWAN): 

Evolution of wave action density (N) spectrum is solved.
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The two modules are dynamically coupled.

Continuity

X Momentum

Y Momentum



TUFLOW: 

2D Depth-Averaged Shallow Water Equations:

Governing Equations-Urban Flood Model
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Continuity

X Momentum

Y Momentum



11

Nested Model Approach: 

Output of the low-resolution model is used as the boundary 
condition in a high-resolution model

Model D1
Model D3Model D2

125x200 m2 30-90 m 2.5 m

Computational Grid-Storm Surge Model

Castrucci and Tahvildari, MTS Journal (2018)
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Hurricane Irene (2011): 

Model D1 Model D2

Storm Surge Model Validation

Model 3: No tide gage within the domain in 2011

Castrucci and Tahvildari, MTS Journal (2018)



Model T1: Coarse grid (~10 m resolution), City scale

Model T2: Fine grid (~2 m resolution), Neighborhood 
scale

Urban Flood Model Domain 
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Main Components

1m DEM 
topography and 

bathymetry

Road Network

Flowline Shapefile

TUFLOW Model

Land cover, soil Type, 
Manning’s coefficient 

Impervious Ratio
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Urban Flood Model Domain



Storm Surge Model (Delft3D)

Overland Flood Model (TUFLOW )
15

Study Area for Combined Flood Modeling

Water level boundary 

condition on river banks/open coasts 

(every 1000 m)



Water level at a representative point in a flood-prone 

neighborhood in Norfolk, VA:
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Results

Fairfax Ave

Flooding is dominated by storm surge.



Scenario 1: Storm Surge Only

Scenario 3: Total Water Level 

(Rain + Storm Surge)

Results

Scenario 2: Rain Only



Flood reports during Hurricane Irene (2011)

Maximum Water Depth (m)
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Results – Qualitative Validation
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Results

Dynamic modeling of overland flooding during Hurricane Irene

(2011)
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Ongoing/Future Work

• Assess the performance of the combined flood modeling 

approach for a storm event with intense precipitation, such as 

Hurricane Mathew (2016)

• Taking into account flooding impact on positioning of 

emergency vehicles

• Extend the domain of the urban flooding model 

• Assess the impacts of climate change, precipitation and relative 

SLR, on flooding

• Relative SLR effects on shoreline change
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Thank you!

Questions?


