SURROGATE MODELING OF STORM RESPONSE

Jeffrey Melby, Noble Consultants-G.E.C. Inc.

Alex Taflanidis, University of Notre Dame Norberto Nadal-Caraballo, US Army Engineer R&D Center Victor Gonzalez, US Army Engineer R&D Center Fatima Diop, Noble Consultants-G.E.C. Inc.

Contact: jmelby@nobleconsultants.com 1 Aug 2018

Pressent attion for I (CCCE 200188

Probabilistic Coastal Hazard Assessment

Specific Objectives

- High-fidelity Surrogate Models for Hurricane Response
 - Rapid prediction of response: inundation (surge+tide), wave height, wave period, wave direction, currents, wind speed, wind direction
 - For hurricane water levels, use coastal hazards system and NOAA forecast inputs
 - For wave transmission, use CHS, buoy data, or WIS as inputs
 - Robust surrogate parameterization
 - ► Uncertainty
- Centralized computation/distribution -Coastal Hazards System
- Stand-alone PC software StormSim

Surrogate Modeling

Surrogate Techniques: Data Driven

- Least squares regression
- Low dimensional spline interpolation
- Dimensional functions
- Polynomial chaos
- Response surface approximations
- Artificial neural networks
- Kriging or Gaussian process emulation

Kriging Implementation

 n_x : input dimension (hurricane characteristics) n_z : output dimension (surge response at different locations) n: number of experiments (storms in database) $R(x^{l},x^{m}|s)$: correlation function with hyper-parameters s (tuning) f(x): basis (trend) functions

Experiment matrix: $\mathbf{X} = [\mathbf{x}^1 \dots \mathbf{x}^n]^T$ Observation matrix: $\mathbf{Z} = [\mathbf{z}^1 \dots \mathbf{z}^n]^T$

Training Set

<u>Jia, G.</u> and A.A. Taflanidis (2013). "Kriging metamodeling for approximation of high-dimensional wave and surge responses ...". *Computer Methods in Applied Mechanics and Engineering*, 261-262, 24-38.

Jia, G., Taflanidis, A.A., Nadal-Caraballo, N.C., Melby, J.A., Kennedy, A.B., Smith, J.M., (2015). Natural Hazards.

Kriging Implementation

 n_x : input dimension (hurricane characteristics) n_z : output dimension (surge response at different locations) n: number of experiments (storms in database)

 $R(\mathbf{x}^{l}, \mathbf{x}^{m}|\mathbf{s})$: correlation function with hyper-parameters s $f(\mathbf{x})$: basis (trend) functions

Experiment matrix: $\mathbf{X} = [\mathbf{x}^1 \dots \mathbf{x}^n]^T$ Observation matrix: $\mathbf{Z} = [\mathbf{z}^1 \dots \mathbf{z}^n]^T$

Predictive variance (for each output)

 $\sigma_i^2(\mathbf{x} \mid \mathbf{X}) = \tilde{\sigma}_i^2 [1 + \mathbf{u}(\mathbf{x} \mid \mathbf{X})^T \{\mathbf{F}(\mathbf{X})^T \mathbf{R}(\mathbf{X})^{-1} \mathbf{F}(\mathbf{X})\}^{-1} \mathbf{u}(\mathbf{x} \mid \mathbf{X}) - \mathbf{r}(\mathbf{x} \mid \mathbf{X})^T \mathbf{R}(\mathbf{X})^{-1} \mathbf{r}(\mathbf{x} \mid \mathbf{X})]$ where $\mathbf{u}(\mathbf{x} \mid \mathbf{X}) = \mathbf{F}(\mathbf{X})^T \mathbf{R}(\mathbf{X})^{-1} \mathbf{r}(\mathbf{x} \mid \mathbf{X}) - \mathbf{f}(\mathbf{x})$ process variance: $\tilde{\sigma}_i^2 = 1/n \sum_{h=1}^n \rho_{hi}^2$

 ρ_{hi} elements of $\rho = C(X)^{-1}(Z - F(X)\beta^*)$; C(x) Cholesky factorization of R(x)

Hyper-parameter optimization

Leave-one out cross validation (LOOCV)

Can emphasis be given to specific observations (storms)?

Adaptive Design of Experiments

Bulk Surrogate Training Coos Bay, OR

Inputs

- Forcing, input vector **x**
 - Offshore Wave Height H_{m0} (12 values from 1 to 15 m)
 - Offshore Peak Period T_{ρ} (8 values from 8 to 22 sec)
 - Offshore Mean Wave Direction (5 values from 220 to 240 deg)
 - Nearshore Total Water Level (9 values from -1.5 to 2.5 m, MSL)
 - 4320 Training events are synthetic

Outputs

- Response:
 - Nearshore Wave Height H_{m0}
 - Nearshore Peak Period T_{ρ}
 - Nearshore Mean Wave Direction
- All events transformed to nearshore using CMS-Wave

CMS-Wave Modeling Coos Bay, OR

Depth, MSL (m) 150 125 100

> 50 25 0

Parent Grid: 32 km x 32 km

Child Grid: 9.2 km x 10.3 km

Forced by WIS station on seaward edge of parent grid

Validated with buoy 46229 and nearshore AWAC gage

CMS-Wave Validation

	Mean	Bias	RMSE
H _{m0} , m	2.21	0.11	0.23
T _p , s	11.2	0.27	1.07
Dir, deg	293	3.2	7.4

Ref: Lin et al. ICCE 2018

Surrogate Validation WIS 83032, 4 of 5 top storms

Adaptive Design of Experiments

- Select initial set of experiments as random input vector **x** (20)
- Compute normalized predictive variance q
- Rank based on variance and select subset with highest variance
- Reduce set based on clustering
- Compute incremental set of 10 experiments by minimizing IMSE

Conclusions

- Accurate risk assessment requires high fidelity modeling which is resource demanding
- Surrogates promote efficient yet accurate computations
- Adaptive DOE can dramatically reduce number of required simulations
- Applied at Coos Bay, OR for jetty life cycle probabilistic design and assessment
- Please see Victor Gonzalez pres., Fri, 0930

