SMALL BUILDING PERFORMANCE IN HURRICANE IKE ON THE BOLIVAR PENINSULA

Spencer Rogers

North Carolina Sea Grant

rogerssp@uncw.edu

Lauren Rosul
Casey Dietrich
Andrew Kennedy
Matthew Peterman

University of North Carolina-Wilmington

North Carolina State University

University of Notre Dame

University of North Carolina-Wilmington

North Carolina Sea Grant

UNC-Wilmington Center for Marine Science
Civil, Construction & Environmental Engineering

Hurricane Ike UNIQUE DATASET

- Surge and wave gages
- >100-year design conditions
- Freeboard above required Base Flood Elevation common
- Floor elevations surveyed
- **Community scale**

PRIOR POST-STORM ELEVATION STUDIES

- 25 houses H. Katrina FEMA MAT
 - Floor joist failure documented
- 81 houses H. Opal FEMA HAZUS
 - Coastal A-zone/Limit of Moderate Wave Area (LIMWA) identified

This study: H. Ike Three phases

4337 buildings

2,813 failures

19 Partial Wave Damage

USGS, Notre Dame, UNC-W, NCSU & NC Floodmapping

Google Maps

c. Notre Dame

Maximum Wave Elevation

Maximum Wave Height

Potential Erosion Failures

Cross-Shore Lowest Floor Elevation Relative to ADCIRC Wave Elevation

Wave Failures

Cross-Shore
Lowest Floor Elevation Relative to
ADCIRC Wave Elevation

STRUCTURES = 4337

Survived = 1505

Destroyed = 2510

Breakaway Walls

WALLS DESIGNED FOR 125 MPH WINDS

FAILED in

~1.5-ft WAVES

FEMA Limit of Moderate Wave Action (LiMWA) or Coastal A-Zone

Risk of Failure Relative to Peak Wave Elevation above Lowest Floor Elevation (LFE): ≤ 500' from Shoreline for ADCIRC

Building Damage Variability with Flood Depth

CONCLUSIONS

Where breaking wave elevation known:

- Depth/damage begins at bottom of floor joists
- Failure ~100% at 5' higher

CONCLUSIONS

- Wave models reasonable over flooded land ~500' from Gulf
- >2350' from Gulf
 - Breaking wave height < 1.5'?</p>
 - Transformed to non-breaking wave?

FUTURE WORK

- Link database to NFIP flood claims
- Survey why owners chose to build above minimum base flood elevation
- Full-scale wave tank testing on floor and wall systems

QUESTIONS?