

RISK ANALYSIS FOR COASTAL FLOODING UNDER CLIMATE CHANGE

Daiki Tsujio & Paul Bates

Population in Low Elevation Coastal Zone

Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment. PLoS ONE 10(3): e0118571. doi:10.1371/journal.pone.0118571 http://127.0.0.1:8081/plosone/article?id=info:doi/10.1371/journal.pone.0118571

Coastal Flood Risk Management

Aim of This Research

An Integrated Risk Analysis Scheme

- Consider all effects of future climate change
- Cover all annual flood events

Actual Impact Analysis of Coastal Flood Risk

Verify the presented method

Outline of Presentation

Flood Risk Analysis Scheme

Method

- Probabilistic Risk Analysis
- Monte-Carlo simulation
- Covering all annual floods in target terms
- LISFLOOD-FP

36th International Conference on Coastal Engineering 2018

Variation – Duration & Boundary Condition

Temporal Variation: Hydrograph

Avonmouth (AV)
 Hinkley Point (HP)

Spatial Distribution: Boundary Condition

Estimation of Total Damage Cost (C_t) $C_t = C_a + C_b + C_e + C_d + C_i$

Damage Cost		ltems	Values		
Ca	Agriculture	Maximum Damage Value	- Fixed: £ 264 / 50 m ²		
C	Building	Maximum Damage Value	 Normal Dist. Mean: £ 1.15 M / 50 m² 		
c_b		Depth-Damage Function	Normal Dist.Multi Coloured Manual (MCM)		
C _e	Emergency Service	Ratio to C_b	- Fixed: 5.6 % (MCM, 2010)		
C _d	Death Value of Statistical Life		 Normal Dist. (Mean: £ 2.4 M / person) 		
C _i	Injury Method		- Defra (2006)		

Calculation Cases

Case		Storm Tide	Sea Level Rise	Future Change of Storm Surge	Variation of Duration	Variation of Boundary Condition
1	Storm Tide	Х	-	-	-	-
2	SLR (Low)	Х	X: Low	-	-	-
3	SLR (Med)	Х	X: Med	-	-	-
4	SLR (High)	Х	X: High	-	-	-
5	Storm Surge	Х	-	X: Med	-	-
6	Duration	Х	-	-	Х	-
7	Boundary C	Х	-	-	-	Х
8	All (SLR-L)	Х	X: Low	X: Med	Х	Х
9	All (SLR-M)	Х	X: Med	X: Med	Х	Х
10	All (SLR-H)	Х	X: High	X: Med	Х	Х

Impacts on Future Flood Risk

Results of Flood Area

Case 9: 5 factors with medium SLR scenario

Time Series of Flood Area & Damage Cost

Impacts on Flood Area & Damage Cost

Impacts with Projection Lead Time

Flood Area (km²)

Damage Cost (M £)

I: 2015-2030, II: 2031-2050, III: 2051-2080, and IV: 2081-2100

Conclusion

Thank you for your attention!

