

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

The State of the Art and Science of Coastal Engineering

Rock Armor Damage in Depth-limited Breaking Wave Conditions

Josep R. Medina, Professor Universitat Politècncia de València, 46022 Valencia, SPAIN

María P. Herrera, PhD Civil Engineer PROES Consultores, 28020 Madrid, SPAIN

M. Esther Gómez-Martín, Assistant Professor Universitat Politècncia de València, 46022 Valencia, SPAIN

INTRODUCTION – 2D tests - Analysis of results - Conclusions

J.R. Medina M.P. Herrera M.E. Gómez-Martín

INDEX

- **1. Introduction. Literature review**
- 2. 2D small-scale tests. Experimental set-up
- 3. Analysis of results. Design-guidelines

5. Conclusions

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 – August 3, 2018

J.R. Medina M.P. Herrera M.E. Gómez-Martín

MOUND BREAKWATERS: HYDRAULIC STABILITY OF ARMORS

- Design formulas derived from physical tests in non-breaking wave conditions
- Rayleigh distribution: H_{2%}≈ 1.4 H_s
- Most structures are built in depth-limited breaking wave conditions
- Nonlinear and highest waves break before reaching the structure: H_{2%} < 1.4 H_s

$$N_{S} = \frac{H}{\Delta D_{n50}} = (K_{D} \cot \alpha)^{1/3}$$
 breaking wave conditions: H=H_b

 K_D =3.5 (USACE, 1975) and K_D =2.0 (USACE, 1984) IMPLICIT SAFETY FACTORS?

INTRODUCTION - 2D tests - Analysis of results - Conclusions

J.R. Medina M.P. Herrera M.E. Gómez-Martín

1. Design wave height (intermediate-depth) breaker index method Goda (1974, 2000 and 2012) $H_{1/3} = \begin{cases} (\mathcal{K}_{S}\mathcal{H}_{0}') & \text{for } h/\mathcal{L}_{0} \ge 0.2 \\ \min[(\beta_{0}\mathcal{H}_{0}' + \beta_{1}\mathcal{H}), (\beta_{\max}\mathcal{H}_{0}'), (\mathcal{K}_{S}\mathcal{H}_{0}')] & \text{for } h/\mathcal{L}_{0} < 0.2 \\ \min[(\beta_{0}^{*}\mathcal{H}_{0}' + \beta_{1}^{*}\mathcal{H}), (\beta_{\max}^{*}\mathcal{H}_{0}'), (1.8\mathcal{K}_{S}\mathcal{H}_{0}')] & \text{for } h/\mathcal{L}_{0} < 0.2 \end{cases}$

2. Shallow foreshore: Wave height distribution

Battjes and Groenendijk (2000)

ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 – August 3, 2018

INTRODUCTION - 2D tests - Analysis of results - Conclusions

ERNATIONAL CONFERENCE

ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 – August 3, 2018

INTRODUCTION - 2D tests - Analysis of results - Conclusions

J.R. Medina M.P. Herrera M.E. Gómez-Martín

SINGLE- AND DOUBLE-LAYER ARMORS

- $N_s = \frac{H}{\Delta D_{n50}} = (K_D \cot \alpha)^{1/3}$ (Hudson formula for preliminary design)
- USACE (1975 and 1984): K_D(breaking) < K_D(non-breaking) Xbloc[®] (2014): K_D(non-breaking) < K_D(breaking) CLI (2018): K_D(breaking) < K_D(non-breaking)

higher safety factor? depth-limited H_{max}? higher safety factor?

Introduction - 2D TESTS - Analysis of results - Conclusions

J.R. Medina M.P. Herrera M.E. Gómez-Martín

LPC-UPV wave flume (30x1.2x1.2 meters), bottom slope m=1/50

d1=80 cm, d2=40cm, dm=120 cm

Piston wave-maker (active wave absorption)

13 wave gauges (G1 to G13)

passive wave absorption

Introduction - 2D TESTS - Analysis of results - Conclusions

J.R. Medina M.P. Herrera M.E. Gómez-Martín

Tests with and without breakwater model (2L rock armor) $(D_{n50}(cm)=3.18, \rho_r(g/cm^3)=2.677, W_{50}(g)=86.1)$

Introduction - 2D TESTS - Analysis of results - Conclusions

J.R. Medina M.P. Herrera M.E. Gómez-Martín

TESTS WITH BREAKWATER MODEL

Separation Incident + Reflected Waves

LASA-V method (Figures and Medina, 2004)

Incident waves at the wave generation zone (G1 to G4)

Armor damage measurement

Virtual Net (Gómez-Martín and Medina, 2014)

Visual Counting (Vidal et al., 2006)

Numerical model: SwanOne software

SWAN- CWD method

Incident waves (H_{m0}, T_p) at wave generation zone

Estimations $H_{2\%,}\,H_{1/10}$ and $H_{m0}~$ at G5 to G12

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 - August 3, 2018

J.R. Medina M.P. Herrera M.E. Gómez-Martín

WAVE ANALYSIS

Tests without breakwater model:

measured waves = incident waves

Tests with breakwater model:

incident + reflected waves at wave-maker

Numerical simulations with SwanOne:

estimated waves = incident waves

$$rMSE = \frac{MSE}{Var} = \frac{\frac{1}{N_o} \sum_{n=1}^{N_o} (e_n - o_n)^2}{\frac{1}{N_o} \sum_{n=1}^{N_o} (o_n - \overline{o})^2}$$

Best agreement: H_{m0} (rMSE=5.8%) SwanOne explained 94.2% of the variance of measured H_{m0} without structure

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 - August 3, 2018

J.R. Medina M.P. Herrera M.E. Gómez-Martín

36TH INTERNATIONAL CONFERENCE

ON COASTAL ENGINEERING 2018

ARMOR DAMAGE MEASUREMENTS

S_e=S_v=S

J.R. Medina M.P. Herrera M.E. Gómez-Martín

25

J.R. Medina M.P. Herrera M.E. Gómez-Martín

ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 – August 3, 2018

d*=hs

 $d^*=2h_s$

d*=3hs

 $d^*=4h_s$

J.R. Medina M.P. Herrera M.E. Gómez-Martín

m=1/50 and cotα=H/V=1.5 H_{m0} (d*=3h_s)

$$S = 0.066 \left(\frac{H_{m0}}{\Delta D_{n50}}\right)^6$$

$$N_s(50\%) = \frac{H_{m0}}{\Delta D_{n50}} = 1.57 \cdot S^{1/6}$$

$$N_{s} = \frac{H}{\Delta D_{n50}} = 1.62 \cdot S^{1/5}$$

$$USACE^{*} (1975)$$

$$H=H_{b} >>H_{m0}$$

$$SF\approx 1.4$$

 36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

 Baltimore, Maryland | July 30 - August 3, 2018
 Introduction - 2D Tests - Analysis of results - CONCLUSIONS

J.R. Medina M.P. Herrera M.E. Gómez-Martín

HYDRAULIC STABILITY OR ARMOR LAYERS

Most physical tests in <u>non-breaking wave conditions</u> Design formulas based on non-breaking wave conditions Methods to separate incident and reflected (I+R) waves

S=k N⁵?

Most structures built in <u>depth-limited breaking wave conditions</u> Nonlinear effects and **no method to separate I+R waves** (h_s , 1/m, s_m)

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

The State of the Art and Science of Coastal Engineering

Rock Armor Damage in Depth-limited Breaking Wave Conditions

Josep R. Medina, Professor Universitat Politècncia de València, 46022 Valencia, SPAIN

María P. Herrera, PhD Civil Engineer PROES Consultores, 28020 Madrid, SPAIN

M. Esther Gómez-Martín, Assistant Professor Universitat Politècncia de València, 46022 Valencia, SPAIN

