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Performance of aboveground storage tanks
(ASTs) during past hurricane events
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Motivation and objectives

Few fragility assessment studies are currently available:
I Landucci et al. (2012): Flood/surge and very simplistic model
I Kameshwar and Padgett (2017a,b): Wind or storm surge

No studies have considered the hydrodynamic effects (i.e.,
current and waves) of the surge

Objective of this study:

Develop fragility models for a typical AST subjected to both the
hydrostatic and hydrodynamic effects of storm surge

Two failure modes: Flotation and buckling
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Numerical modeling of wave loads

Case study AST: D = 15 m and H = 10 m

Overview of the numerical model:
I Finite element (FE) model developed using the Arbitrary

Lagrangian-Eulerian (ALE) method in LS-Dyna
I Waves generated from Fenton’s wave theory (Fenton 1988)

Inflow boundary (wavemaker): Prescribed velocity

Outflow boundary: Non reflecting ambient elements 

Water 

Air (not shown) Rigid tank shell (not shown)

Bottom boundary: No-slip condition

Side boundaries: Slip condition
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Validation of the numerical model for wave loads

Modeling assumptions validated against wave experiments
performed at Oregon State University (Bernier et al. 2018)
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Validation of the numerical model for wave loads

Validation for solitary wave and regular wave cases:
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Experimental results

LS-Dyna model

Pressure in front of cylinderWater velocity in front of cylinder

Solitary wave - H = 0.2 m: 

Pressure in front of cylinderWater velocity in front of cylinder

Regular wave - H = 0.1 m; T = 2.95 s: 
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Regression model for pressure distribution

Regression model to reduce the computational cost of estimating
wave loads for fragility analysis

Space filling experimental design using Latin Hypercube
Sampling (LHS) with 220 FE analyses

Ranges of surge and wave parameters obtained from simulations
of historic and synthetic storms in the Houston region (ADCIRC):

Parameter Parameter name Range 
S   
Hw (m) Wave height 0.0 – 2.0 
Tw (s) Wave period 3.0 – 6.0 
U (m/s) Current velocity 0.0 – 1.5 

(m) Surge depth 1.0 – 7.5 
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Regression model for pressure distribution

Pressure distribution regression model using Artificial Neural
Network (error less than 10%)

Input : {S,Hw, Tw, U, θ, h} 7→ Output : {Phd}
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Fragility assessment under surge and wave loads

Overview of methodology:

Generate training and test samples

Variables: Internal liquid, 

surge and wave conditions 

Evaluate if AST failure occurs under 

surge and wave loads 

Train logistic regression classifiers

with training samples 

Accuracy adequate on 

test samples? 

Repeat for 

each sample

Estimate wave loads using

Artificial Neural Network 

P (Failure | IM;X) =
1

1 + exp(−l(IM;X))
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Unanchored flotation fragility model

Three possible mechanisms:

Wt +Wl < Fb

(Wt +Wl − Fb)
D

2
< Mhd

(Wt +Wl − Fb)ϕ < Fhd Fb

Wt + WL

(Wt + WL - Fb)ϕ

Fhd

Mhd and Fhd obtained from ANN model

Fragility model derived from 10,000 training samples

Accuracy of 99.5% on 1,000 test samples
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Unanchored flotation fragility model

Fragility model parameterized on:
I Internal liquid: ρ, L
I Surge: S, U
I Wave: Hw, Tw
I Friction: ϕ
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Anchored flotation fragility model

Add anchors tensile and shear strength to previous inequalities

Additional parameters:
I Anchors: d, s, fy , f ′c, hef

Accuracy of 97.2%
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Buckling under surge and wave loads

Buckling strength is assessed via finite element (FE) analysis

Overview of FE model (LS-Dyna):
I AST designed per API 650 standard

Roof shell 

(conic roof with rafters)

Shell course

Top angle

Bottom boundary:

All DOFs fixed

Loads applied on FE model are obtained from ANN

Fragility model derived from 2,000 buckling analyses

Accuracy of 97.5% on 200 test samples
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Buckling fragility model

Fragility model parameterized on:
I Internal liquid: ρ, L
I Surge: S, U
I Wave: Hw, Tw
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System fragility

Both failure modes using series system assumption

P (Failure) = P (Flotation
⋃

Buckling)
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Conclusions and future work

Developed numerical model and regression model to easily
estimate wave loads

Provided better understanding of failure mechanisms under surge
and wave loads

Developed the first fragility models for an AST subjected to surge
and wave loads
I Importance of waves to adequately estimate probability of failure
I Flotation is the failure mode of interest for unanchored ASTs
I Buckling is the failure mode of interest for anchored ASTs

Future work:
I Fragility models parameterized on AST geometry
I Risk assessment framework
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