Probabilistic Modeling of Aboveground Storage Tanks Under Surge and Wave Loads

Carl Bernier

Graduate Research Assistant

Jamie Padgett Associate Professor

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 – August 3, 2018

- Wave Loads Methodology Flotation Buckling System Conclusions
- Introduction
 Wave loads
- Fragility assessment methodology
- Flotation fragility
- 5

4

Buckling under surge and wave loads

System fragility

Conclusions

Performance of aboveground storage tanks (ASTs) during past hurricane events

Introduction Wave Loads

Flotation

Buckling

System

Conclusions

Motivation and objectives

Introduction

-
- Flotation
- Buckling
- System
- Conclusions

- Few fragility assessment studies are currently available:
 - Landucci et al. (2012): Flood/surge and very simplistic model
 - Kameshwar and Padgett (2017a,b): Wind or storm surge
- No studies have considered the hydrodynamic effects (i.e., current and waves) of the surge

Objective of this study:

Develop fragility models for a typical AST subjected to both the hydrostatic and hydrodynamic effects of storm surge

Two failure modes: Flotation and buckling

Numerical modeling of wave loads

- Introduction
- Wave Loads
- Methodolog
- Flotation
- Buckling
- System
- Conclusions

- Case study AST: D = 15 m and H = 10 m
- Overview of the numerical model:
 - Finite element (FE) model developed using the Arbitrary Lagrangian-Eulerian (ALE) method in LS-Dyna
 - Waves generated from Fenton's wave theory (Fenton 1988)

Validation of the numerical model for wave loads

Introduction Wave Loads

Methodology

Flotation

Buckling

System

Conclusions

 Modeling assumptions validated against wave experiments performed at Oregon State University (Bernier et al. 2018)

Validation of the numerical model for wave loads

Introduction

Wave Loads

Methodology

Flotation

Buckling

System

Conclusions

• Validation for solitary wave and regular wave cases:

Regression model for pressure distribution

ntroduction

- Wave Loads
- Methodology
- Flotation
- Buckling
- System
- Conclusions

- Regression model to reduce the computational cost of estimating wave loads for fragility analysis
- Space filling experimental design using Latin Hypercube Sampling (LHS) with 220 FE analyses
- Ranges of surge and wave parameters obtained from simulations of historic and synthetic storms in the Houston region (ADCIRC):

Parameter	Parameter name	Range
<i>S</i> (m)	Surge depth	1.0 - 7.5
$H_{w}(\mathbf{m})$	Wave height	0.0 - 2.0
$T_w(s)$	Wave period	3.0 - 6.0
<i>U</i> (m/s)	Current velocity	0.0 - 1.5

Regression model for pressure distribution

Introduction

Wave Loads

Methodology

Flotation

Buckling

System

Conclusions

 <u>Pressure distribution</u> regression model using Artificial Neural Network (error less than 10%)

Input : $\{S, H_w, T_w, U, \theta, h\} \mapsto \text{Output} : \{P_{hd}\}$

Fragility assessment under surge and wave loads

Introduction

Wave Loads

Methodology

Flotation

Buckling

System

Conclusions

Overview of methodology:

Unanchored flotation fragility model

Introduction

Methodolog

Flotation

Buckling

System

Conclusions

• Three possible mechanisms:

TT7

$$\begin{split} & w_t + w_l < F_b \\ & (W_t + W_l - F_b) \frac{D}{2} < M_{hd} \\ & (W_t + W_l - F_b) \varphi < F_{hd} \end{split}$$

- M_{hd} and F_{hd} obtained from ANN model
- Fragility model derived from 10,000 training samples
- Accuracy of 99.5% on 1,000 test samples

Unanchored flotation fragility model

Introduction

Wave Loads

Methodology

Flotation

Buckling

System

Conclusions

• Fragility model parameterized on:

- lnternal liquid: ρ , L
- ▶ Surge: *S*, *U*
- Wave: H_w , T_w
- Friction: φ

Anchored flotation fragility model

- Introduction Wave Loads Methodology
- Flotation
- Buckling
- System
- Conclusions

- Add anchors tensile and shear strength to previous inequalities
- Additional parameters:
 - Anchors: d, s, f_y, f'_c, h_{ef}
- Accuracy of 97.2%

Buckling under surge and wave loads

- ntroduction
- Wave Loads
- Methodology
- Flotation
- Buckling
- System
- Conclusions

- Buckling strength is assessed via finite element (FE) analysis
- Overview of FE model (*LS-Dyna*):
 - AST designed per API 650 standard

- Loads applied on FE model are obtained from ANN
- Fragility model derived from 2,000 buckling analyses
- Accuracy of 97.5% on 200 test samples

Buckling fragility model

Introduction

Wave Loads

Methodology

Flotation

Buckling

System

Conclusions

- lnternal liquid: ρ , L
- ▶ Surge: *S*, *U*
 - Wave: H_w , T_w

System fragility

Introduction Wave Loads

Methodolog

Flotation

Buckling

System

Conclusions

• Both failure modes using series system assumption

 $P(\text{Failure}) = P(\text{Flotation} \bigcup \text{Buckling})$

Conclusions and future work

- Introduction
- Methodology
- Flotation
- Buckling
- System
- Conclusions

- Developed numerical model and regression model to easily estimate wave loads
- Provided better understanding of failure mechanisms under surge and wave loads
- Developed the first fragility models for an AST subjected to surge and wave loads
 - Importance of waves to adequately estimate probability of failure
 - Flotation is the failure mode of interest for unanchored ASTs
 - Buckling is the failure mode of interest for anchored ASTs
- Future work:
 - Fragility models parameterized on AST geometry
 - Risk assessment framework

Acknowledgements

- ntroduction
- Wave Loads
- Methodology
- Flotation
- Buckling
- System
- Conclusions

- National Science Foundation under award #1635784
- Natural Science and Engineering Research Council of Canada
- The Houston Endowment via the SSPEED Center
- Rice University: Sabarethinam Kameshwar
- UT Austin: Clint Dawson

- Introduction
- Wave Loads
- Methodology
- Flotation
- Buckling
- System
- Conclusions

Introduction		
Wave Loads	API (American Petroleum Institute), (2013), API Standard 650: Welded steel tanks for oil storage, 12th edition, API,	
Methodology	Washington, DC.	
Flotation	Bernier C., Padgett J.E., Lin Y., Dawson C.N., Lomonaco P., Cox D.T. (2018) Large-Scale Laboratory Experiments of Vertical Cylinders Representative of Aboveground Storage Tanks Subjected to Waves. Coast Eng, In review.	
Buckling	Fenton, J. D. (1988), The numerical solution of steady water wave problems, Computers and Geosciences, 14(3), 357-368.	
System	Kameshwar, S., and Padgett, J.E. (2018). Storm surge fragility assessment of above ground storage tanks. Struct. Saf.	
Conclusions	70, 48-58.	
	Kameshwar, S., and Padgett, J.E. (2015). Stochastic modeling of geometric imperfections in aboveground storage tanks for probabilistic buckling capacity estimation, ASCE-ASME J. Risk Uncertain. Eng. Syst., Part A: Civ. Eng.	
	Landucci G., Antonioni G., Tugnoli A., Cozzani V. (2012). Release of hazardous substances in flood events: Damage model for atmospheric storage tanks. Reliab Eng Syst Saf, 106, 200-216.	
	LS-Dyna R8.0 [Computer software], Lawrence Livermore Technology Corporation, Livermore, CA.	