Effects of wave loading conditions on the fragility of pile-supported wharves/piers

Georgios P. Balomenos

Postdoctoral Fellow

Dept. of Civil and Environmental Eng.

Jamie E. Padgett

Associate Professor

Dept. of Civil and Environmental Eng.

Outline

- 1. Introduction
- 2. Problem description
- 3. Suggested approach
- 4. Case study
- 5. Results and conclusions

Wharves/Piers

Closed type

(earth fill extended to front wall)

Open type

(wood, steel, concrete piles)

(Cong et al. 2013)

Structural Vulnerability

West pier collapse

East pier uplift

Port of Gulfport (Mississippi) after Hurricane Katrina (2005) (Gutierrez et al. 2006)

Structural Vulnerability

Pier deck damage due to uplift wave forces at Cozumel Cruise terminal (photos provided by: Dr. Carlos Ospina, BergerABAM)

Fragility Analysis

- 1. Estimates failure probability conditioned on selected parameters (e.g., storm surge, wave)
- 2. Allows uncertainty propagation to input parameters affecting demand (e.g., wave period) and capacity (e.g., material properties)
- 3. Requires the definition of a limit state function $g(C,D) = \begin{cases} Capacity \leq Demand \Rightarrow Failure \\ Capacity > Demand \Rightarrow Safety \end{cases}$

Fragility Analysis

$$g(C_i, D_i) = \begin{cases} C_i - D_i \le 0 \Longrightarrow Failure \\ C_i - D_i > 0 \Longrightarrow Safety \end{cases}$$

i = examined failure mode (e.g., uplift, shear, flexural, etc.)

$$p_{f,uplift} = P[g_{uplift}(C_{uplift}, D_{uplift}) \le 0 \mid IMs]$$

IMs = intensity measures (e.g., surge elevation, wave height, wave period)

 C_{uplift} = uplift capacity (connection strength, deck weight)

 D_{uplift} = uplift demand (vertical wave forces)

Adopted Wave Model

McConnell et al. (2004)

$$F_{v,imp} = F_{v,qs} \frac{a_{v,imp}}{(t_r/T_m)^{b_{v,imp}}}$$

$$F_{v,qs} = \left(F_v^* \frac{a_{v,qs}}{\left[\frac{(\eta_{max} - Z_c)}{H_s}\right]^{b_{v,qs}}}\right) \times \varepsilon_1$$

a, b = empirical coefficients from regression analysis of the test data (McConnell et al. 2004)

 ε_1 = model error to envelope data with a wide degree of scatter (Balomenos and Padgett 2018)

Empirical Coefficients (quasi-static)

Tested model (McConnell et al. 2004)

Configuration	$a_{v,qs}$	$b_{v,qs}$	$arepsilon_1$		
			Distribution	Mean	Stdev
Seaward deck	0.82	0.61	Normal	1.0	0.167
Internal deck	0.71	0.71	Normal	1.1	0.333

$$F_{v,qs} = \left(F_v^* \frac{a_{v,qs}}{\left[\frac{(\eta_{max} - Z_c)}{H_s}\right]^{b_{v,qs}}}\right) \times \varepsilon_1$$

Dowelled Deck-Pile Connection

Typical pile-supported port and connection details (Stringer and Harn 2013)

Examined Connections

2 Connections

Dowels above deck's top mat reinforcement

<u>Dowels below deck's</u> top mat reinforcement

Details of examined connections (Balomenos and Padgett 2018)

2 Scenarios/Connection

- 1. SM = Seaward deck
- 2. IM = Internal deck

Fragility Analysis Flowchart – Uplift

Uplift fragility flowchart (Balomenos and Padgett 2018)

Fragility Analysis

$$p_{f,uplift} = P[C_{uplift} \le D_{uplift} | H_{max}, Z_{C}, T_{m}]$$

Wave forces on pile-supported deck (Balomenos and Padgett 2018)

Fragility Surface – Seaward (PM-IN)

Fragility Surfaces

 $T_m = 6 \text{ s}$

Seaward

<u>Internal</u>

PM-OUT

Fragility Surfaces – Seaward

Dowels **above** deck's top mat reinforcement

Dowels below deck's top mat reinforcement

Fragility Curve

Fragility curve $Z_{\rm C} = -1.15 \, {\rm m} \, {\rm and} \, T_m = 6 \, {\rm s}$ (SM connection)

Uplift probability $Z_{\rm C} = -1.15~{\rm m}$ and $H_{max} = 2.11~{\rm m}$ (SM=Seaward, IM=internal)

36th International Conference on Coastal Engineering 2018

Baltimore, Maryland | July 30-August 3, 2018

Fragility curve for $Z_{\rm C} = -1.15 \, {\rm m}$ (Seaward Deck, PM-OUT connection)

Fragility curve for $Z_{\rm C} = +1.15 \, {\rm m}$ (Seaward deck, PM-OUT connection)

Conclusions

- 1. This study
 - sheds light on the fragility of pile-supported port connections subjected to coastal hazards (fragility curves)
 - explores how different wave loading conditions affect their performance
- Rapid increase of uplift probability with the increase of the storm surge
- Sharper changes are expected to the uplift probability for a seaward deck
- 4. Sufficient anchorage of dowels can prevent deck uplift during coastal extreme events

Future Work

- Comparative analysis for different wave models → examine the role of epistemic uncertainty in affecting the fragility models
- 2. Parameterized fragility models \rightarrow apply these models across a region (regional risk assessment)

$$p_f(uplift|\mathbf{X}, IM) = \frac{\exp(g(\mathbf{X}, IM))}{1 + \exp(g(\mathbf{X}, IM))}$$

Fluid structure interaction (FSI) → capture full characteristics of the wave loading

Acknowledgements

THANK YOU