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Introduction Wave elevation measurement

Accurate measurements of surface wave elevation  are crucial for many coastal applications:

 wave overtopping and submersion

 navigation and platform safety

 wave-induced sediment transport



Introduction Wave elevation measurement

Direct measurement of the surface elevation

Nortek

Acoustic surface tracking

AST

Martins et al 2018

Lidar scanning 
 expensive

 difficult to deploy and fragile

 AST sensitive to air bubbles 

and turbidity

 lidar requires the presence of

nearshore structures

 highly accurate measurement



Introduction Wave elevation measurement

Pressure sensors are still a very useful tool for measuring waves

 cheap

 easy to deploy

 robust (storms, bottom trawling, …)

 not sensitive to air bubbles 

and turbidity
Ocean Sensor Systems

z

z = (x0,t)

xx0

Pressure sensor

Pm(x0,t) 
m

not a direct measurement of   methods for recovering 



Introduction Wave elevation measurement

Commonly used reconstruction methods and their limitations

Ocean Sensor Systems

z

z = (x0,t)

xx0

Pressure sensor

Pm(x0,t) 
m



Introduction Commonly used reconstruction methods

long waves: tsunamis, tides, …  hydrostatic reconstruction
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Introduction

swell, wind-generated waves  non-hydrostatic reconstruction

Commonly used reconstruction methods



“ transfer function method ”

Introduction

2 = 𝑔|𝑘| tanh ℎ0 𝑘 

 𝐿  =
cosh(ℎ0 𝑘 )

cosh 𝑚 𝑘
 𝐻  𝐻 =

Pm−Pa

0𝑔
+ 𝑚 − ℎ0

z = (x0,t)

xx0

Pm(x0,t) 
m

h0

z

swell, wind-generated waves  non-hydrostatic reconstruction

pressure response factor

recover the wave field by means of a transfer function based on linear theory

Commonly used reconstruction methods



Introduction

 gives reasonable estimates for bulk wave parameters such as Hs

Guza and Thornton 1980, Bishop and Donelan 1987,  Tsai et al. 2005, …

Martins et al. 2017, BARDEX II, h0=1.17 m, Tp=12.1 s

lidar scanner 
linear reconstruction L



 fails to describe the shape of nonlinear nearshore waves

“ transfer function method ”

 provides a poor description of the peaky and skewed shape of nonlinear waves

 underestimates the individual wave height by up to 30 %

swell, wind-generated waves  non-hydrostatic reconstruction

Commonly used reconstruction methods



Introduction

There is a critical need for nonlinear reconstruction methods  

Nonlinear reconstruction methods

 Constantin 2012, Deconinck et al. 2012, Olivears et al. 2012, Clamond, 2013  

 periodic waves of permanent form

 Oliveras et al. 2012

 heuristic approximation for irregular waves



Introduction

Two nonlinear reconstruction methods for irregular waves in the field  

Nonlinear reconstruction methods

 Bonneton, Lannes, Martins, Michallet, Coastal Eng. 2018  

 weakly dispersive 

 Bonneton and Lannes, JFM 2017

 fully dispersive
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Nonlinear reconstruction formulas
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Nonlinear reconstruction formulas fully dispersive reconstruction

 𝐿(𝑘) = cosh ℎ0 𝑘  𝐻(𝑘)

𝑁𝐿 = 𝐿 −
1

𝑔
𝜕𝑡 (𝐿𝜕𝑡𝐿)

In variables with dimension 

Asymptotic expansion of the Euler equations in terms of     = 0 + 1 + 𝑂(2)

 𝐿(𝑘) = cosh  𝑘  𝐻(𝑘)

𝑁𝐿 = 𝐿 −  𝜕𝑡(𝐿𝜕𝑡𝐿)
Bonneton and Lannes (JFM 2017)



Nonlinear reconstruction formulas weakly dispersive reconstruction

𝑆𝑁𝐿 = 𝑆𝐿 −
1

𝑔
𝜕𝑡 (𝑆𝐿𝜕𝑡𝑆𝐿) Bonneton et al., Coastal Eng. 2018

𝑆𝐿= 𝐻 −
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2𝑔
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2𝐻

Asymptotic expansion of the Euler equations in terms of     = 0 + 1 + 𝑂(2)

Waves in shallow water  ( ≪ 1)



Applications to laboratory and field data

Laboratory experiments

LEGI wave flume

Field measurements



Applications to laboratory and field data Fully dispersive reconstruction

LEGI wave flume

bichromatic waves propagating over a gently sloping (1/20) movable bed

LEGI wave flume experiments, Michallet et al. 2017 

 and Pm were synchronously measured in the shoaling zone, 
at 18.5m from the wave maker; h0=0.326 m, Tm=1.7 s, =0.53 

36 m long, 0.55 m wide



Applications to laboratory and field data Fully dispersive reconstruction

bichromatic waves propagating over a gently sloping movable bed

f1 f2

Energy density spectra 



Applications to laboratory and field data

fc

 𝐿() = cosh ℎ0 𝑘()  𝐻()

2 = 𝑔|𝑘| tanh(ℎ0 𝑘  )

Fully dispersive reconstruction

linear reconstruction



Applications to laboratory and field data

fc

 𝐿() = cosh ℎ0 𝑘()  𝐻()

2 = 𝑔|𝑘| tanh(ℎ0 𝑘  )

Fully dispersive reconstruction

linear reconstruction

 𝐿() =  𝐻()

f > fc



Applications to laboratory and field data

 𝐿() = cosh ℎ0 𝑘()  𝐻()

2 = 𝑔|𝑘| tanh(ℎ0 𝑘  )

Fully dispersive reconstruction

linear reconstruction



Applications to laboratory and field data

𝑁𝐿= 𝐿 −
1

𝑔
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Fully dispersive reconstruction

non-Linear reconstruction



Applications to laboratory and field data

 direct measurement L NL

SK 0.93 0.70 0.96

SK error  25% 3%

𝑁𝐿= 𝐿 −
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Fully dispersive reconstruction

non-Linear reconstruction



Applications to laboratory and field data

fc

𝑁𝐿= 𝐿 −
1

𝑔
𝜕𝑡 𝐿𝜕𝑡𝐿

Fully dispersive reconstruction

non-Linear reconstruction



Applications to laboratory and field data

nonlinear weakly dispersive reconstruction

high nonlinearities

Highest wave nonlinearities generally occur in 

shallow water close to the onset of breaking

 local in time

 no frequency cut-off fc

 reconstruction of the whole elevation density spectrum

  < 0.3
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Nortek

Applications to laboratory and field data

Field campaign (April 13-14, 2017)

La Salie beach, southern part of the French Atlantic coast Instruments were deployed at low tide:

 pressure transducers (Ocean Sensor Systems)

 Nortek ADCP, Signature 1000   direct measurement 

of  from the vertical beam of the ADCP

Weakly dispersive reconstruction



Applications to laboratory and field data

h0=2.25 m, Hs=0.70 m, Tp=11.1 s

 nonlinear waves in the shoaling zone just prior to breakingField campaign

=0.075  weakly dispersive waves

Weakly dispersive reconstruction

Hmax=1.4 m



Applications to laboratory and field data

Field campaign

Weakly dispersive reconstruction



Applications to laboratory and field data

Field campaign
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Weakly dispersive reconstruction



Applications to laboratory and field data

Field campaign

Weakly dispersive reconstruction



Applications to laboratory and field data

Field campaign

wave by wave analysis

c

Weakly dispersive reconstruction

40 %



Applications to laboratory and field data

Field campaign

wave by wave analysis

c

Weakly dispersive reconstruction



Conclusion

Two novel nonlinear methods for recovering the surface wave elevation from pressure measurements

 general fully dispersive method
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=0.53

 weakly dispersive method,    0.3
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=0.28



Conclusion

Two novel nonlinear methods for recovering the surface wave elevation from pressure measurements

 provide much better results compared to the transfer function method 

commonly used in coastal applications

 are very simple and easy to use

 represent an economic alternative to direct wave elevation measurement methods (AST and Lidar)

 are a valuable tool for accurately characterizing extreme waves

in shallow and intermediate water depths



Thank you for your attention



Applications to laboratory and field data

Field campaign

Weakly dispersive reconstruction


