Extreme meteo-oceanographic events

Franck MAZAS, Luc HAMM - ARTELIA

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 – August 3, 2018

From meteo-oceanography...

Waves

Currents

Sea level

Wind

GFDL CM 2.6 Ocean Simulation

Sea Surface Temperature

Sea surface temperature

15°

32

... to coastal engineering

Coastal structures

Beach erosion

Offshore structures

Coastal flooding

Purpose of the study

Problems

- Link with the physics:
 - ✓ Combination of parameters describing one phenomenon $(H_s/T_p, ...)$
 - Combination of components of a broader phenomenon (tide/surge, ...)
 - ✓ Combination of parameters describing distinct phenomena $(H_s/Z, ...)$
- Requests from the clients not always well defined:
 - ✓ Joint occurrence of extreme values of meteo-oceanic variables? → source variables
 - ✓ Joint occurrence of values of meteo-oceanic variables causing extreme values of a combination of these? → response variable
 - Probabilities of exceedance or probability of occurrence?
- \rightarrow need to define a conceptual framework for multivariate analysis
- British Standards 2016: 60 occurrences of "event"... but no definition!

Univariate events: a 2-step framework

Introduction of the concept of event in the univariate case (ICCE 2012)

Autocorrelated time series of observations Z(t)

Sequential variables: temporal evolution of the environmental variable Z

Sampling: Physical Declustering

Definition, identification, description of independent events

X: Event-describing random variable

i.i.d. sample X_i (size N_T)

Statistical Optimization

Setting a threshold for the convergence of the X_i towards the GPD by determining the extreme domain in a statistical meaning

GPD-convergent sample $Y_i = X_i - u_{s|X_i>u_s}$ (size N)

Exceedances over the statistical threshold of the « extreme » X_i

Event = storm, flood, heat wave, hurricane, flooding...

NTERNATIONAL CONFERENCE

Meteo-oceanic phenomena: description and components

Multivariate events: definition

Combinations

A classification for multivariate analyses

Type A: a single phenomenon described by different physical quantities that are possibly not of the same kind

- Type B: a phenomenon made of different components, described by physical quantities of the same kind between one component and another
- Type C: several phenomena described by physical quantities that are possibly not of the same kind $\begin{cases}
 H_s \\
 T_p
 \end{cases}$

Type A analyses: choice of an event-defining variable \rightarrow univariate methods

- Sampling = event **definition, identification** and **description** e.g. *H_s/duration*
 - ✓ Event definition: large values of wave height H_s
 - Event identification: physical threshold, temporal parameters for independence...
 - ✓ Event description: peak H_s , storm duration, wave covariates $(T_p, \theta_p...)$ at the peak...

Cotonou - Time series of observations

Type B analyses: declustering on a single variable \rightarrow univariate methods

- Case of extreme sea levels = astronomical tide + meteorological surge:
 - ✓ Astronomical tide: deterministic variable → no need for sampling
 - Meteorological surge: classical POT declustering

La Rochelle - La Pallice - Time series of observations

Type C analyses: a choice to be made between the source phenomena and a possible response phenomenon

Choose an event-defining variable among the source variables

Threshold exceedance by H_s

High tide sampling

rd | July 30 - August 3, 2018

Brest

Type C analyses: a choice to be made between the source phenomena and a possible response phenomenon

Considering both variables equivalently

Bivariate threshold

(Li et al., 2014)

Type C analyses: a choice to be made between the source phenomena and a possible response phenomenon

 Sampling from a univariate response function combining the variables and covariate

ON COASTAL ENGINEERING 2018

2018

aryland Luly 30 - August 3 2018

AR

- A choice to be made according to the aim of the study
- An example of visualisation: Source-Receptor-Pathway approach

Event definition driven by the sampling

Event definition

The probabilistic point of view

Probability: measure of the likelihood of occurrence of the event A, a subset of the possible outcomes Ω

Return period

Basic definition... and common misunderstandings

■ The "average period between two occurrences of the event" ???...

I ... or rather a yearly probability of exceedance...

Return period

Basic definition... and common misunderstandings

... to be accounted each and every year over a duration (lifetime)

Franck MAZAS – Extreme meteo-oceanic events – Baltimore, 2 August 2018

Maryland | July 30 – August 3, 2018

Clarifying the requests in engineering studies

Extreme bivariate analyses

Examples - Type A: H_s / Storm duration

Event-describing pairs only (no sequential equivalent for storm duration)

ON COASTAL ENGINEERING 2018

pre Maryland | July 30 - August 3, 2018

2018

ART

Extreme bivariate analyses

Examples - Type C: H_s / W_s

Choice of the event-defining variable?

Events defined by H_s peaks Contours of iso-density from marginal extremes of wave height Events defined by W_s peaks Contours of iso-density from marginal extremes of wind speed

Conclusions

An event-based framework for extreme analyses

Extension of the event extrapolation framework to the multivariate case with a classification based on physical analysis prior to probabilistic modelling

- Appropriate conceptual framework for complex requests in engineering studies
- Direct applicability to hydrology, environmental extremes... and other (finance)

Thank you for your attention!

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 – August 3, 2018

