

TIDE-TSUNAMI INTERACTION

IN A HIGHLY ENERGETIC CHANNEL

WHO WE ARE...

PATRICIO WINCKLER Civil Engineer, PhD

IGNACIO SEPÚLVEDA Civil, Engineer PhD

FELIPE ARON Geologist, PhD.

MANUEL CONTRERAS Mathematician, MSc.

CHACAO BRIDGE PROJECT

U\$ 800 millions

JACK-UP AT ROCA REMOLINOS

VIDEO FROM A FIXED POSITION

CHACAO BRIDGE PROJECT

CHACAO BRIDGE PROJECT

NUMERICAL MODELING OF TIDE - TSUNAMI

Tsunami

(constant tide)

Linear superposition tide – tsunami (composite)
 (both are independent)

Coupling tide – tsunami (full)

NUMERICAL MODELING OF TIDE - TSUNAMI

NUMERICAL MODELING OF TIDE - TSUNAMI

$$\frac{\partial}{\partial t}(h\bar{u}) + \frac{\partial}{\partial x}(h\bar{u}^2) + \frac{\partial}{\partial y}(h\bar{u}\bar{v}) = fh\bar{v} - gh\frac{\partial \eta}{\partial x} - \frac{g\bar{u}\sqrt{\bar{u}^2 + \bar{v}^2}}{M^2h^{1/3}} + \frac{\partial}{\partial x}(hT_{xx}) + \frac{\partial}{\partial y}(hT_{xy}) - h\frac{\partial\Omega}{\partial x} = 0$$

TIDE MODEL

TIDE MODEL

GLOBAL TIDE MODEL

Table 2: Data sources used in calibration of the tide model in 2000.

Туре	Station	Latitude Longitude	Location	Availability (days)
Elevation (1)	Puerto Montt	41°29'06" S 72°57'39" W	Open coasts	Since 1999
Elevation (2)	Tique	41°48' S 73°24' W	Canal Chacao	23/07/2000 06/09/2000
Elevation (2)	Eje-1	41°48' S 73°32' W	Canal Chacao	03/12/1999 24/01/2001
Elevation (2)	Carelmapu	41°49' S 73°43' W	Canal Chacao	15/01/2000 22/01/2001

(1) Measurements by SHOA, available at www.sealevelmonitoring.com

 $\frac{\partial \eta}{\partial t} + \frac{\partial h \bar{u}}{\partial x} + \frac{\partial h \bar{v}}{\partial y} = 0$

$$\frac{\partial}{\partial t}(h\bar{u}) + \frac{\partial}{\partial x}(h\bar{u}^2) + \frac{\partial}{\partial y}(h\bar{u}\bar{v}) = fh\bar{v} - gh\frac{\partial \eta}{\partial x} - \frac{g\bar{u}\sqrt{\bar{u}^2 + \bar{v}^2}}{M^2h^{1/3}} + \frac{\partial}{\partial x}(hT_{xx}) + \frac{\partial}{\partial y}(hT_{xy}) - h\frac{\partial\Omega}{\partial x} = 0$$

$$\frac{\partial}{\partial t}(h\bar{v}) + \frac{\partial}{\partial x}(h\bar{u}\bar{v}) + \frac{\partial}{\partial y}(h\bar{v}^2) = fh\bar{u} - gh\frac{\partial \eta}{\partial y} - \frac{g\bar{v}\sqrt{\bar{u}^2 + \bar{v}^2}}{M^2h^{1/3}} + \frac{\partial}{\partial x}(hT_{yx}) + \frac{\partial}{\partial y}(hT_{yy}) - h\frac{\partial\Omega}{\partial y} = 0$$

Table 1: Tidal constituents

Constituent	Amplitude [m]	Period [hr]
M2	0.2423	12.421
01	0.1005	25.819
S2	0.1128	12.000
K2	0.0307	11.967
N2	0.0464	12.658
K1	0.1416	23.934
P1	0.0468	24.066
Q1	0.0193	26.868
Mf	0.0417	13.661
Mm	0.0220	27.555
Ssa	0.0194	182.621

⁽²⁾ Measurements by ICUATRO-COWI (2000)

TIDE MODEL

CALIBRATION

VELOCITY ROCA REMOLINO

RUPTURE MODEL

RUPTURE MODEL

1960 – TYPE EVENT

1960 SLIP MODEL

1960SLIP MODEL ON FAULT PLANE

1960SURFACE ELEVATION

TIDE-TSUNAMI INTERACTION

TIDE - TSUNAMI INTERACTION

TIDE LEVEL

TSUNAMI MODEL

ELEVATION

SPEED

02:00

2015-02-20

03:00

04:00

05:00

06:00

COMPOSITE MODEL (WORST)

FULL MODEL (WORST)

MAXIMUM ELEVATION

TSUNAMI MODEL

COMPOSITE MODEL (WORST)

FULL MODEL (WORST)

MAXIMUM SPEED

F1921

TIDE - TSUNAMI INTERACTION

SURFACE ELEVATION

Surface elevation is sensitive to tide level

TIDE - TSUNAMI INTERACTION

CURRENT SPEED

Drag forces
generated by
tsunami are
duplicated

TIDE - TSUNAMI INTERACTION

ARRIVAL TIME

- Very sensisitve to tidal flow direction
- Not sensitive to tidal level

EBB
Delay: 1~3 minutes

FLOOD
Anticipation: 2~6 minutes

VISTA EN PLANTA NIVEL DE FONDO

FINDINGS

FINDINGS

MOST RELEVANT...

- To well studied uncertainties (e.g. source, bathymetry, model), we add uncertainty associated with earthquake time (and its relation with the tide) and modelling approach.
- Tides play a significant role in tsunami propagation in highly energetic channels.
- **Hydrodynamic patterns** differ significantly among approaches:
 - Tsunami model is less conservative in both velocities and amplitudes
 - Composite model provides larger velocities
 - Full model yields higher amplitudes, specially in shallow areas
- Time of arrival of the leading wave is sensitive to the direction of the tidal current and less sensitive to tidal level and speed

1960

PUNTA CORONA

PUERTO MONTT

CALBUCO

ANCUD

QUELLON

ISLA GUAFO MELINKA

