

Geotechnical properties of salt marsh and tidal flat substrates at Tillingham, Essex

Presenting Author: Helen Brooks. Supervisors: Iris Möller (Cambridge), Tom Spencer (Cambridge), Kate Royse (BGS)

UK vs US salt marshes

Muddy coastal wetlands

 Flooded and drained by salt water (brought in by tides)

Less organic in UK (compared to USA)

Tillingham Salt Marsh, Essex, UK

Tillingham Marsh

Why am I interested?

• Salt marshes are important

-ecologically -biogeochemically

-for flood defence

- So, we want to understand how these landforms function now
- Then model how they might evolve in future (under climate change)

-This is vital for future coastal defence planning

Why am I interested?

- Salt marsh stability is key
 - -resistance to erosion

-increase in surface elevation a rate commensurate with sea-level rise

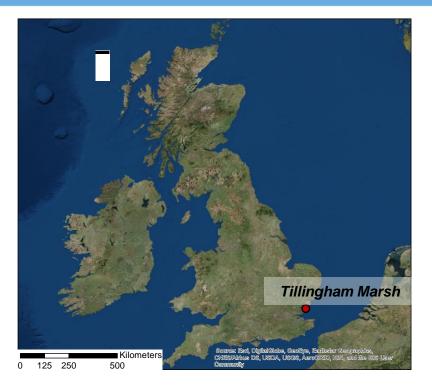
- Resistance to erosion
 - -surface resistance
 - -resistance of material at marsh edge

Marsh evolution models require improved parameterisation

Sediment properties

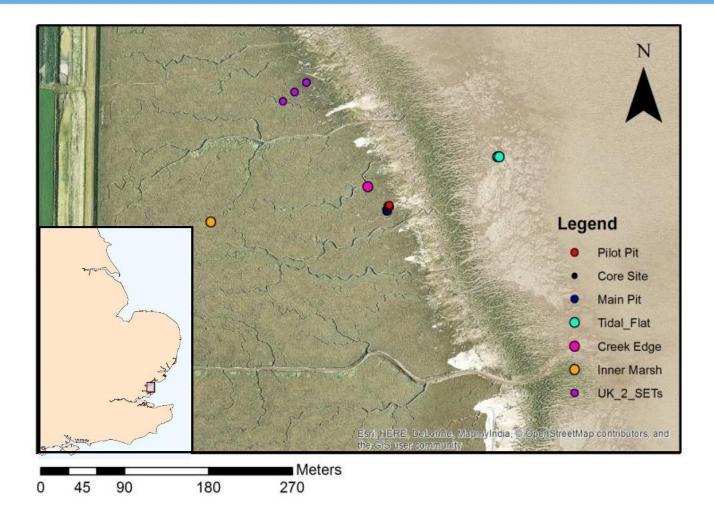
- Characterise sediment properties (composition and behaviour)
 - Particle size
 - Organic content
 - Shear strength
 - Consolidation

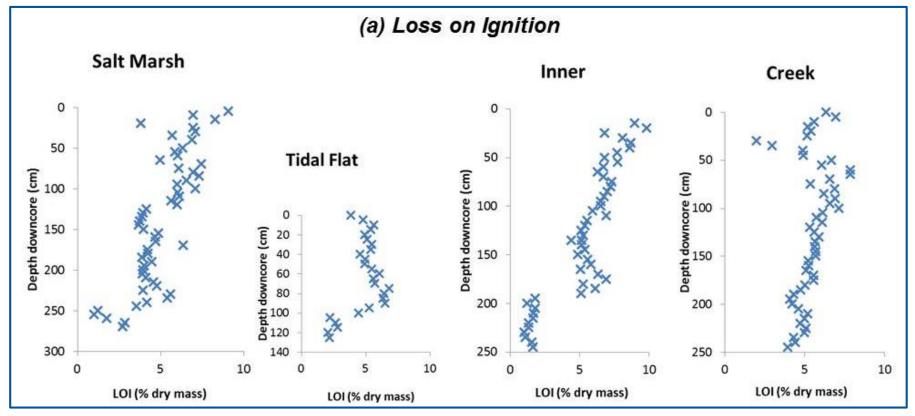
Cores taken at Tillingham Marsh (Sep 2017).


• Clay vs. silt behaviour (cohesive vs non-cohesive)

Compare sediment properties to vertical and lateral erosion rates

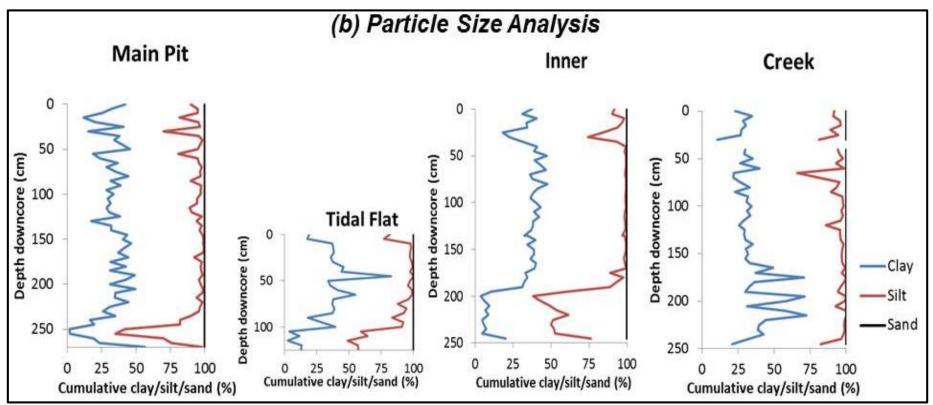
Field site


- Cohesive properties
- Fine sediment (silt-clay)
- Open coast


Tillingham Marsh (September 2017).

Field Site

Composition



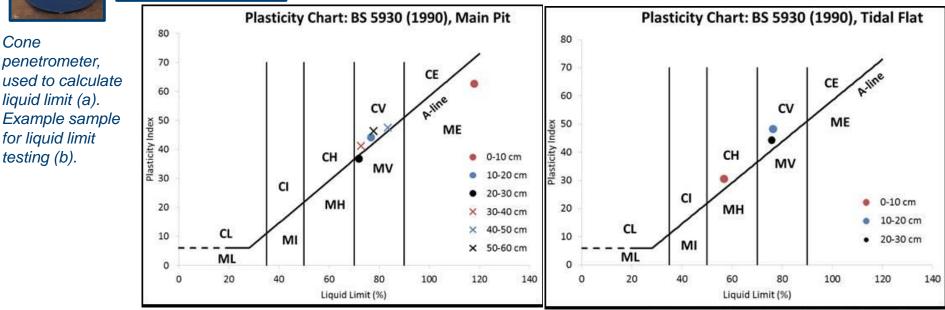
Loss on Ignition from Tillingham Marsh cores taken in September 2017

• Variable LOI in upper core, lower LOI at base

Composition

Particle Size Analysis from Tillingham Marsh cores taken in September 2017

- Fluctuating clay/silt/sand in upper core, sandy base layer.
- Generally low sand content (at least until base layer).


Behaviour

Cone

- High/very high plasticity clays on marsh, slightly lower plasticity on the mudflat
- All values plot close to the A-line-mixture of clay-٠ and silt-type behaviour.
- No consistent variation with depth

Plasticity Charts for main marsh site and tidal flat site.

Fieldwork-undisturbed sampling

• 'Undisturbed' conditions

• Subsample further in lab

Fieldwork-undisturbed sampling

Salt marsh sample extraction (Sep 2017).

Lab work

Taken: Oct 2017.

Taken: Aug 2017.

Lab work-shear box test

• Quantify shear strength

Understand material behaviour

• Understand compressive properties

• Aim: to understand the resistance of the marsh surface and vertical profile, to erosive forces.

Sample preparation for shear box test. Taken: Feb 2018.

Shear plane created by shear box test. Taken: Dec 2017.

Shear Box Test

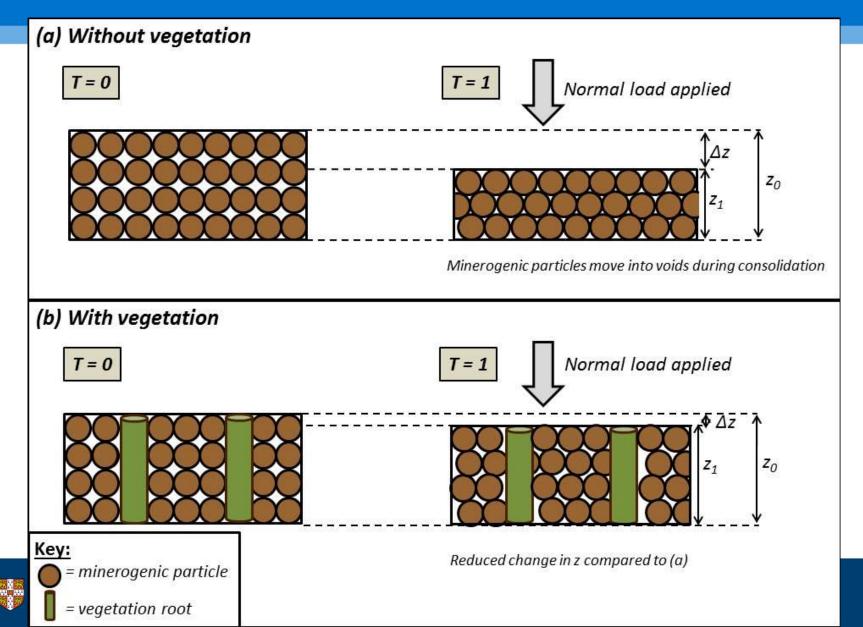
• Ductile behaviour

- Frictional strength has greater importance on the mudflat
- Stress-strain curves-Salt Marsh, 0-30 cm 30 25 Shear Stress (kPa) 12 10 10 kPa 20 kPa 5 40 kPa 0 2 4 6 8 10 12 0 Shear Strain (%)
- Cohesive strength is relatively more important on the marsh

Sample ID	Cohesion (kPa)	Friction Angle (°)
Marsh, 0-30 cm	3.56	29.8
Marsh, 30-60 cm	5.68	29.9
Tidal flat, 0-30 cm	0	36.1

Shear box test results for the main marsh site.

Cohesive vs frictional strength?


- The strength of a soil can be divided into two types:
 - Cohesive strength
 - Electrostatic forces
- Frictional strength
 - Interlocking of particles

Tillingham Marsh (Taken Sep 2017)

Why do we see these results?

Relation to marsh evolution

- Mapping on aerial photographs
- Measurements of vertical marsh change
- Flume experiments (RESIST-UK and Hydralab+)
- Comparison with non-cohesive site in Morecambe Bay (North West England)

GWK flume, Hannover. Source: https://www.fzk.uni-hannover.de/

- Understanding of how salt marsh and tidal flat substrates affect resistance to erosion is poorly understood
- Sediment cores show evidence of a base layer
- Undisturbed samples allow testing of in situ shear strength
- Tidal flat substrates seem to have greater frictional strength at Tillingham, UK

Any questions?

Thanks to:

Iris Möller Tom Spencer Simon James Price Kate Royse Elizabeth Christie Ben Evans Matt Kirkham James Pollard Amy McGuire

Twitter: @hbrooks94