Numerical Investigation of Breaking Irregular Waves over a Submerged Bar With CFD

Ankit Aggarwal, Arun Kamath, Hans Bihs

Department of Civil and Environmental Engineering

Norwegian University of Science and Technology, Norway

Mayilvahanan Alagan Chella,

Department of Civil and Environmental Engineering and Earth Sciences

University of Notre Dame, Indiana, USA

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

The State of the Art and Science of Coastal Engineering

Introduction

- Numerical modeling of breaking irregular waves
- Breaking irregular waves:
 - Breaking location, breaker type and height
- Wave propagation over a submerged bar:
 - wave shoaling, breaking, de-shoaling and decomposition processes

• Spatial evolution of irregular waves over a bar

Overview of numerical model: REEF3D

- Reynolds Averaged Navier-Stokes equation (RANS)
- Fifth-order WENO scheme for spatial discretization
- Third-order TVD scheme for time discretization
- Level set method for capturing the free surface
- k- ω turbulence model
- Fully MPI parallelized code

Irregular wave generation

• First order theory: linear superpositioning of regular wave components

$$egin{aligned} \eta &= \sum_{i=1}^N A_i cos heta_i \ A_i &= \sqrt{2S(\omega_i)\Delta\omega_i} \ heta_i &= k_i x - \omega_i t + \epsilon_i \ k_i &= rac{2\pi}{\lambda_i} \end{aligned}$$

Second order theory by Dalzell (1999)

$$\eta = \eta_1 + \eta_2$$

$$u = u_1 + u_2$$

$$w = w_1 + w_2$$

Irregular wave propagation

Irregular wave propagation

Wave-gauge	Statistical pa-	Theory	Num. $(1^{st}-$	Num.(2 nd -	Error	Error
location	rameters		order)	order)	$(1^{st}-$	$(2^{nd}-$
					order)	order)
					(%)	(%)
	$H_s(m)$	0.140	0.1113	0.1363	16.92	1.2
At $x = 2m$	$T_p(s)$	1.20	1.22	1.21	1.7	0.83
	$H_s(m)$	0.140	0.1031	0.1306	24.21	6.0
At $x = 11m$	$T_p(s)$	1.20	1.22	1.21	1.7	0.83

Submerged bar: Numerical setup

• Numerical results are compared with the experiments by Beji and Battjes(1993)

Numerical setup

• JONSWAP spectrum:

$$S(\omega) = \frac{5}{16} H_s^2 \omega_p^4 \omega^{-5} exp\{\frac{-5}{4}(\frac{\omega}{\omega_p})^{-4}\} \gamma^{exp\{\frac{-(\omega-\omega_p)^2}{2\sigma^2 \omega_p^2}\}} A_{\gamma}$$

 $\gamma = 3.3$; $A_{\gamma} = 1 - 0.287 \ln (\gamma)$; $\sigma = 0.07$, when $\omega < \omega_p$; $\sigma = 0.09$, when $\omega > \omega_p$

- Offshore significant wave height $H_{so} = 0.054m$, Peak period $T_p = 2.5s$
- Computational time: 120 hours on 512 processors with dx=0.01m
- Simulation time: 500s
- Wave spectral density is calculated with sampling interval of 0.02s.

Convergence study

Red line for experiments dashed black for dx=0.01m blue line for dx=0.05m solid black line for dx=0.10m

Wave gauge at x=11m

Weather side of slope: wave shoaling

- A major portion of the spectral density between 0-1.5 Hz at WG2
- As the waves shoal, the contribution of spectral wave density towards higher frequencies increases

Flat part of the bar: wave breaking

- For the wave gauge at x=13m (WG4), some waves in the wave train have already broken
- The spectral peak is reduced
- The contribution of wave energy towards higher frequencies is further increased

Lee side of slope: wave decomposition

- Wave decomposition and wave deshoaling processes attributed to the increasing water depth on the lee side of the slope
- The contribution of the spectral wave density in the Higher-frequencies becomes significant

Lee side of slope: wave decomposition

Comparison of local H_s and offshore H_{so}

- Wave breaking zone is between 12-14m (on the flat part of the bar), as seen from the reduction in the local H_s
- A slight increase in local H_s during wave de-shoaling process.

Breaking irregular waves over a submerged bar

<u>Summary</u>

- The numerically simulated results are consistent with the experiments by Beji and Battjes (1993)
- The spectral peak is reduced during wave breaking and some of the peak energy is dissipated during wave breaking and some is transferred towards higher frequencies
- Wave transformation processes along the bar are represented reasonably
- On going work:
 - Breaking irregular waves over a slope
 - Spectral characteristics such as skewness and band width parameter
 - Characteristics and geometric properties

Acknowledgements

Project Number: 246810

Project Number: NN2620

Thank you for your attention