NUMERICAL SIMULATION OF IRREGULAR WAVE RUNUP ON A BEACH

36th International Conference on Coastal Engineering

Speaker: Luning Sun Advisor: Dr. Andrew Kennedy Department of Civil & Environmental Engineering & Earth Sciences

Outline

- Introduction
- Numerical Simulation
- Run-up Height Result
- Momentum Flux Result
- Summary and Conclusion

Introduction: Motivation

- Frequent extreme weather conditions due to climate change (Sea Level Rise, Hurricanes)
- As of 2010, 44 percent of the world population live 150 km or closer to the ocean water.
- Affect coastal infrastructure and people in coastal area. (Harvey 2017)

Objective

Outline

- Introduction
- Numerical Simulation
- Run-up Height Result
- Momentum Flux Result
- Discussion and Conclusion

Overview of research

Numerical Model: SWASH

- SWASH(Simulating WAves till SHORE)
- Open source software developed and maintained by TU Delft.
- Euler equation with the non-hydrostatic pressure: $P = \rho(g(\eta z) + q)$
- Achieve good dispersion relationship by dividing the vertical direction into several layers.
- More information available on http://swash.sourceforge.net/

Numerical Model: Simulation Set-up

Domain	2D and 3D		
Grid Size	$dx=2.5m$, $\mathrm{dy}=10m$ (in 3D domain)		
Initial Time Step	0.01s(adjusted by dynamic CFL conditions)		
Simulation Time	1 hour		
Boundary Conditions	Offshore	TMA Spectrum	
	Onshore	Wet-Dry Scheme	
	Side	Periodic Boundary Conditions	
Wave Breaking	Threshold Wave slope		
SGS Model	Smagorinsky Coeficient		
Vertical Layers	3		

Number	100 2D	17 3D	
Time	5 h	7d	
Cores	Serial	24 Cores	
Grid	500× 360000	500× 90 × 360000	
System	CRC, Athos, TACC		

Movie for Two Dimensional Run

9

Visualization of two-dimensional results

Outline

- Introduction
- Numerical Simulation
- Run-up Height Result
- Momentum Flux Result
- Discussion and Conclusion

The College of Engineering at the University of Notre Dame

Dimensionless Parameters in Run-up Comparison

Iribarren Number	$\xi_0 = \frac{tan\alpha}{\sqrt{\frac{H_0}{L_0}}}$
Significant wave height	H_0
Dimensionless Run-up	$R_2 = \frac{R_{2\%}}{H_0}$

11

Run-up series and Run-up peaks

- Definition: Run-up is maximum of discrete wave peak.
- Run-up threshold 15cm

Run-up Height: Dimensional Expression

•
$$R_2 = \left\{ 1.1 \left(0.35 \beta_f (H_0 L_0)^{\frac{1}{2}} \frac{\left[H_0 L_0 (0.563 \beta_f^2 + 0.004) \right]^{\frac{1}{2}}}{2} \right), \xi_0 > 0.3$$

 $0.043 (H_0 L_0)^{1/2}, \xi_0 < 0.3$

13

Two Dimensional Result of $R_2, \sigma_{\theta} = 0^{\circ}$

Run-up height comparison when $C_s = 0.5$, n = $0.01s \cdot m^{-1/3}$

14

Two Dimensional Result of $R_2, \sigma_{\theta} = 0^{\circ}$

Run-up height comparison when $C_s = 0.5$, n = $0.02s \cdot m^{-1/3}$

15

Two Dimensional Result of $R_2, \sigma_{\theta} = 0^{\circ}$

16

Run-up height comparison when $C_s = 0.5$, n = $0.05s \cdot m^{-1/3}$

Movie for Three Dimensional Case

17

Three Dimensional Result of $R_2, \sigma_{\theta} = 30^{\circ}$

18

Run-up height comparison with $\sigma_{\theta} = 30^{\circ}, C_s = 0.5$

Outline

- Introduction
- Numerical Simulation
- Run-up Height Result
- Momentum Flux Result
- Discussion and Conclusion

Momentum Flux Analysis

Dimensionless Elevation	$\eta^{*}\equivrac{\eta}{H_{0}}$,
Normalized Dimensionless Elevation	$\eta_0^*\equiv rac{\eta^*}{\eta_{max}^*}$
Dimensionless Momentum Flux	$M^* = \frac{u u (d+\eta)}{gH^2}$
Normalized Dimensionless Momentum Flux	$M_0^* \equiv \frac{M^*}{M^* _{\eta=0}}$

Momentum Flux variation against elevation on bottom slope $tan\alpha = 0.01$

The College of Engineering at the University of Notre Dame

Momentum Flux variation against elevation on bottom slope $tan\alpha = 0.02$

 η^*

0.4

0.5

0.6

0.7

0.8

The College of Engineering at the University of Notre Dame

0

0.1

0.2

0.3

Momentum Flux variation against elevation on bottom slope $tan\alpha = 0.04$

Momentum Flux variation against elevation on bottom slope $tan\alpha = 0.06$

24

Momentum Flux variation against elevation on bottom slope $tan\alpha = 0.1$

The College of Engineering at the University of Notre Dame

Expression for M_0^* **and actual parameter** a **value**

•
$$\log_{10}^{(M_0^*)} = -a \cdot {\eta_0^*}^2$$

•
$$M_0^* \equiv \frac{M^*}{M^*|_{\eta=0}}$$

•
$$\eta_0^* \equiv \frac{\eta^*}{\eta_{max}^*}$$

Parameter 'a' for two dimensional cases

The College of Engineering at the University of Notre Dame

Regression results

The College of Engineering at the University of Notre Dame

Regression results

Predictive	Response	Slope m	Intercept b	R^2
Variable	Variable			
$\ln(\xi_0)$	$\ln(\eta^*_{max})$	0.5705(0.528,0.613)	0.4138(0.3417,0.4859)	0.8786
ξο	$M^* _{\eta=0}$	0.3124(0.2971,0.3277)	0.003733(-0.002346,0.009813)	0.9436

The College of Engineering at the University of Notre Dame

Momentum flux variation against elevation in three dimensional cases

The College of Engineering at the University of Notre Dame

Outline

- Introduction
- Numerical Simulation
- Run-up Height Result
- Momentum Flux Result
- Summary and Conclusion

Summary and conclusion

- Reproduce empirical formula by considering directional spreading effects.
- Simple model to predict 0.5 percent exceedance momentum flux.
- Applying a safety factor for design use

Acknowledgement

- CRC
- Athos
- TACC

Thank you

The College of Engineering at the University of Notre Dame