

## A CONSISTENT DESCRIPTION OF THE SPATIAL DISTRIBUTION OF WIND GENERATED WAVES WITHIN HURRICANES

lan Young



# 20 years of investigation from:

- Insitu buoys
- Numerical modelling
- Satellite observations
- Advances in understanding of wind-wave physics

Comprehensive and consistent understanding of:

- Spatial distribution of wave height and peak wave period
- Spectral shape
- Directional properties
- Physics at play in tropical cyclones



Wind field

Can be described by a Holland vortex

- $p_0$  central pressure
- $V_{\rm max}$  max wind velocity
- $V_{fm}$  velocity of forward mvmt.
- R radius to maximum winds





#### **Spatial Distribution of Waves**



- SAR aircraft observations (King and Shemdin)
- Extended fetch



Insitu tropical cyclone observations of non-d energy vs non-d frequency Almost identical to fetch-limited results!





The fact that the energy – frequency relationship is the same as for fetch-limited growth suggests:

- Non-d scaling can be used, as for fetch-limited (JONSWAP)
- Nonlinear processes probably dominate





Young (1988) explored the  $V_{fm}$ ,  $V_{max}$  parameter space with a numerical model.

Noting JONSWAP type scaling, defined an equivalent fetch





• With equivalent fetch defined, the max  $H_s$  in the storm follows from JONSWAP relationship

$$\frac{gH_s^{\max}}{V_{\max}^2} = 0.0016 \left(\frac{gx}{V_{\max}^2}\right)^{0.5}$$





## **Extended fetch model – spatial distribution**



- Spatial distribution  $H_s$  greater than  $U_{10}$
- $H_s$  distribution changes with  $V_{max}$  and  $V_{fm}$



- Insitu buoy observations from NW coast of Australia
- Spectra within 8*R* of storm centre unimodal
- Try JONSWAP type fit to data

$$F(f) = \beta g^{2} (2\pi)^{-4} f_{p}^{-(5+n)} f^{n} \exp\left[\frac{n}{4} \left(\frac{f}{f_{p}}\right)^{-4}\right] \cdot \gamma^{\exp\left[\frac{-(f-f_{p})^{2}}{2\sigma^{2} f_{p}^{2}}\right]}$$



(Generalized Donelan et al, 1985)



#### **One-dimensional spectrum**









Why do tropical cyclone waves look and scale like fetch-limited waves?

- Non-linear source terms dominate
- Even follow fetch-limited scaling in regions where no atmospheric input, means that nonlinear terms must be dominant
- i.e. Zakharov view of the world!





## Young (2006) composite of Aust NW Shelf data



As observed by King and Shemdin (1978) and Hwang et al (2016)





#### **Directional spectra**





Despite directional skewing, spreading again follows fetch-limited relationships





- Extended fetch model captures basic role of  $V_{fm}$  and  $V_{max}$  in defining fetch
- Works because of dominant role of non-linear terms
- Model fully defines spatial distribution and spectral shape
- Needs to be updated with runs from a better numerical model (underway)





Young, 2017, Atmosphere



# THE UNIVERSITY OF **MELBOURNE**

© Copyright The University of Melbourne 2011