

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

The State of the Art and Science of Coastal Engineering

The Prediction Of Extreme Value Wind Speeds And Wave Heights From Satellite Data

Alicia Takbash, PhD Candidate

University of Melbourne, Australia atakbash@student.unimelb.edu.au

Supervisor:

Professor Ian Young ian.young@unimelb.edu.au

Content

- 1 Introduction
- 2 Global estimates of Extremes
- 3 Satellite data set
- 4 Validation of Satellite Extreme Value Analysis
- 5 Global distribution of Extremes
- 6 Conclusion

© NOAA's National Weather Service

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 – August 3, 2018

Challenges:

- 1. How to reduce the extend of the required extrapolation?
- 2. How well is the tail of the PDF defined?
- 3. How well does the PDF fits the data?

1 Introduction - Choice of data set

- 1. How to reduce the extend of the required extrapolation?
- Traditional approach is to use buoy/offshore platform data
 - **!!** Locations limited
 - **!!** Long duration records not at all sites
- Alternative approaches:
 - o Numerical model data
 - !! As good as the model physics / performance under extreme condition
 - o Satellite data
 - !! Global coverage; Long duration records (Young et al., 2017)

1 Introduction - Extreme Value Theory

- 2. How well is the tail of the PDF defined?
- 3. How well does the PDF fits the data?
- Assumption of i.i.d.
- Three general approaches:
 - Initial Distribution Method (IDM)
 - e.g. Goda (1998; 1992); Vinoth and Young (2011)
 - Peaks Over Threshold (POT)
 - e.g. Goda (1992); Vinoth and Young (2011)
 - o [Annual Maximum Method (AMM); e.g. Coles (2001)]

Global estimates of Extremes - IDM 2

! No theoretical approach for the choice of an appropriate distribution

- \rightarrow Cumulative distribution function (CDF) that fits the <u>whole</u> PDF:
- Gumbel distribution

$$F(x) = \exp\left[-\exp\left(-\frac{x-A}{B}\right)\right]$$
(1)

The Weibull three-parameter distribution 0

$$F(x) = 1 - \exp\left[-\left(\frac{x-A}{B}\right)^k\right]$$

$$P(x < x^{100}) = 1 - D/T_{100}$$

(Tucker, 1991; Cooper and Forristall, 1997; Teng, 1998)

(2)

JEERING 2018

2 Global estimates of Extremes - POT

- 1. A threshold is set (objectively) and data above this threshold considered [e.g. 90th or 95th percentile (Alves and Young, 2003; Vinoth and Young, 2011)]
- 2. These exceedances will follow a Generalized Pareto distribution (GPD)

$$F(x) = 1 - \left[1 + k\left(\frac{x-A}{B}\right)^{-\frac{1}{k}}\right]$$
 (3)

$$P(x < x^{100}) = 1 - N_y / 100 N_{PoT}$$

(Vinoth and Young, 2011)

3 Satellite data set

3 Satellite data set

Figure 1 Locations of offshore platforms

Figure 2 Radiometer-platform anemometer comparisons

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 – August 3, 2018

5 Global distribution of Extremes - Altimeter POT

Figure 5a Global values of extreme wind speed - Altimeter/POT-GPD

5 Global distribution of Extremes - Altimeter POT

Figure 5b Global values of extreme wave height - Altimeter/POT-GPD

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 – August 3, 2018

5 Global distribution of Extremes - Radiometer POT

Figure 6a Global values of extreme wind speed - Radiometer/POT-GPD (no high wind speed correction)

36TH INTERNATIONAL CONFERENCE
ON COASTAL ENGINEERING 2018
Baltimore, Maryland | July 30 - August 3, 2018

5 Global distribution of Extremes - Radiometer POT

Figure 6b Global values of extreme wind speed - Radiometer/POT-GPD (with high wind speed correction)

 36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

 Baltimore, Maryland | July 30 – August 3, 2018

5 Global distribution of Extremes - Radiometer POT

Figure 7 Global values of extreme wind speed - Radiometer/POT-EXP (with high wind speed correction)

 36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

 Baltimore, Maryland | July 30 – August 3, 2018

5 Global distribution of Extremes - Altimeter IDM

Figure 8a Global values of extreme wind speed - Altimeter/IDM-Gumbel (with high wind speed correction)

 36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

 Baltimore, Maryland | July 30 – August 3, 2018

5 Global distribution of Extremes - Radiometer IDM

Figure 9 Global values of extreme wind speed - Radiometer/IDM-Gumbel (with high wind speed correction)

 36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

 Baltimore, Maryland | July 30 - August 3, 2018

5 Global distribution of Extremes - Altimeter IDM

Figure 8b Global values of extreme wave height - Altimeter/IDM-Gumbel

6 Conclusion

- The new Satellite data enables POT analysis for the first time
 - Altimeter:
 - **!!** Values consistent with buoy and previous numerical model data
 - **!!** Much greater fine scale structure
 - Radiometer:
 - !! Unacceptable "fair-weather" bias
 - \rightarrow Unusable for POT EVA
- IDM yield quite biased estimates of extremes and their spatial distribution
 - !! Comparing to POT, little reason to use IDM in the future!

References

Alves, J.H.G.M. and Young, I.R., 2003, On estimating extreme wave heights using combined Geosat, Topex/Poseidon and ERS-1 altimeter data, Applied Ocean Research, 25, 167-186, doi:10.1016/j.apor.2004.01.002.

Coles, S., 2001, An introduction to statistical modeling of extreme values, Springer-Verlag, London.

- Cooper, C. K., and G. Z. Forristall, 1997, The use of satellite data to estimate extreme wave climate, J. Atmos. Oceanic Technol., 14, 254-266.
- Goda, Y., 1988, On the methodology of selecting design wave height, Proceedings of the 21st International Conference on Coastal Engineering, Am. Soc. of Civ. Eng., Torremolinos, Spain, 899-913.
- Knapp, K.R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The international best track archive for climate stewardship (IBTrACS): Unifying Tropical Cyclone Data. BAMS, doi:10.1175/2009BAMS2755.1.
- Teng, C. C., 1998, Long-term and extreme waves in the Gulf of Mexico, Proc. Conf. on Ocean Wave Kinematics and Loads on Structures, Houston, TX, ASME, 342-349.
- Tucker, M. J., 1991, Waves in Ocean Engineering, Ellis Horwood, 431 pp.
- Vinoth, J. and Young, I.R., 2011, Global estimates of extreme wind speed and wave height, Journal of Climate, 24(6), 1647-1665, doi:10.1175/2010JCLI3680.1.
- Young, I.R., Sanina, E., and Babanin, A.V., 2017, Calibration and cross-validation of a global wind and wave database of Altimeter, Radiometer and Scatterometer measurements, Journal of Atmospheric and Oceanic Technology, 34, 1285-1306,

doi:10.1175/JTECH-D-16-0145.1.

2018

 36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

 Baltimore, Maryland | July 30 - August 3, 2018