

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

The State of the Art and Science of Coastal Engineering

Geometric Characteristics Of Wave-Generated Sand Ripples A Full-Scale Experimental Study

Dongxu Wang

Department of Civil and Environmental Engineering National University of Singapore

Jing Yuan, Dr.

Department of Civil and Environmental Engineering National University of Singapore

Ripple shape

Hydrodynamics
Sediment transport
Seabed morphology

50~100cm

Small-scale wave flumes

Are they similar ?

H., Taylor et al. (2014)

ICCE

2018

https://fineartamerica.com/featured/underwater-sand-ripples-michael-szoenyi.htm

10~15cm

Wave-Current-Sediment (WCS) Facility & Laser-based Bottom Profiler (LBP)

2-D Ripple development

A case of 3-D ripples: development

CCE

A case of 3-D ripples: planform geometry

CCE

2018

2-D Equilibrium Ripples: General Shape

CCE

2-D Equilibrium Ripples: General Shape

$$\psi_{wmd} = 0.062 \text{ Re}_{w} = 8.66 \times 10^{4} A_{bm} = 30 \text{ cm } \lambda = 39.8 \text{ cm}$$

 $\psi_{wmd} = 0.333 \text{ Re}_{w} = 6.16 \times 10^{5} A_{bm} = 80 \ cm \ \lambda = 71 \ cm$

2-D Equilibrium Ripples: General Shape

Filed condition our OWT experiments (large Re_w)

Small wave flumes our OWT experiments (small Re_w) ICCE

2018

What does the crest look like : Crest Roundness

- larger Shields parameters larger Rc \succ
- > Shields parameter \rightarrow roughness = d₅₀
- \blacktriangleright Crest roundness is controlled by the local flow conditions Te044 $U_{bm} = 0.44m/s$ T = 10.00 s $\psi_{wmd} = 0.103$

CCE

2018

$$\lambda = 71.0cm \quad \eta = 12.9cm$$

Ta080
$$U_{bm} = 0.80m / s$$
 $T = 6.25 s$ $\psi_{wmd} = 0.333$

Conclusion

□ A Full-scale OWT experimental study on geometry of coarse-sand vortex ripples (ripple development and equilibrium ripple shapes).

□ 3-D ripples become 2-D on sloping bed: net sediment transport rate also control the planform geometry.

□ Full-scale ($\text{Re}_{w} \sim 10^{5}$) vortex ripples: ~ sinusoidal shape.

□ Flow with larger shields parameter tend to form rounded-crest ripples.

Thank you !

Q&A

WANG D. and YUAN J., (2018), "Bottom-slope-induced net sediment transport rate under oscillatory flows in the rippled-bed regime." Journal of Geophysical Research: Oceans(under minor revision)

WANG D. and YUAN J., (2018), "Geometric Characteristics of Coarse-sand Ripples Generated by Oscillatory Flows: A Full-Scale Experimental Study." Coastal Engineering (submitted)

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 - August 3, 2018

Our study: Given T Longer A_{hm} or larger U_{hm}

2-D ripples

- Finer sand d₅₀ ٠
- Longer excursion amplitude A_{bm} •
- Larger excursion velocity U_{hm} ٠

Pedocchi and Garcia (2009)

Tunnel width: 40 cm

Measured λ of 2-D ripples: 44.7cm-90.4cm

 λ of 2-D ripples in the field: 50cm-100cm e.g., Traykovski, Hay et al. (1999)

Planform Geometry

What does the flank look like : Maximum Local Slope

Flattens the ripples: $\eta/\lambda \downarrow$

 $\beta_{s,max}\,decreasing$

