

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

The State of the Art and Science of Coastal Engineering

WAVE ENERGY CONVERTER WITH WAVE ABSORBING CONTROL

Mr. Takashi Kawaguchi

Aqusys Corporation, Tokyo, Japan (Graduate student at the Chuo University, Japan)

Mr. Kunio Nakano

Oita Works, Mitsui E&S Steel Structures Engineering Co., Ltd. Oita, Japan

Dr. Shogo Miyajima

Akishima Laboratories (Mitsui Zosen) Inc. Tokyo, Japan

Dr. Taro Arikawa

Department of Civil and Environmental Engineering, Chuo University Tokyo, Japan

Inspired by Salter Duck of Edinburgh Univ. in 1982 ICCE 2018 Stephen Salter. dept Mechanical Engineering May field Road Edin burgh APPLICATION OF A PISTON-TYPE ABSORBING WAVEMAKER TO IRREGULAR WAVE EXPERIMENTS Hiromaru Hirakuchi¹ Ryoichi Kajima² Takashi Kawaguchi ³

Waves made by absorption wavemaker

Flap type wavemaker Reflection factor: **97%** Energy absorption: **85%** (0.80 s < T < 2.53 s) https://www.nmri.go.jp/news/toics/wave_art.html

ICCE

2018

National Maritime Research Institute, Tokyo, Japan

Wave absorption with Plunger Float (1)

Wave absorption with Plunger Float (2)

ABSORPTION vs. RESONANCE

2018

Wave Generation & Absorption by Surging Plate

Incident Waves

<Wave Generation>

When generating the waves : $\eta_R = a_R \cos(\omega t - k_0 x + \varepsilon_R)$ Plate motion is to be: $X = S_R \sin(\omega t + \varepsilon_R)$ $\dot{X} = S_R \omega \cos(\omega t + \varepsilon_R)$

> η_R Reflected Waves

 $\overline{2S}$

<Wave Absorption>

When absorbing the waves : $\eta_I = a_I \cos(\omega t + k_0 x + \varepsilon_I)$ Plate motion is to be: $X = -S_I \sin(\omega t + \varepsilon_I)$ $\dot{X} = -S_I \omega \cos(\omega t + \varepsilon_I)$ $\dot{X} = -\omega/\dot{A} \cdot \eta_{I,x=0}$

 $S_R = a_R / \bar{A}$ $S_I = a_I / \bar{A}$

Ā: Response Amplitude

Operator

Velocity potential theory

Resonance by surging plate

CCE

2018

Wave Generation & Absorption by Heaving Body

Resonance by heaving body

$$MZ + C_m Z + (K + K_m)Z = F$$

$$\downarrow Z = F/C_m$$

$$= \omega/\overline{A} \cdot \eta_{I,X=0}$$

$$MASS$$

$$SPRING$$

$$DAMPER$$

$$SYSTEM$$

$$Forced Oscillation theory$$

Tank & Sea Test with Cylindrical Float

in performance.

20kW Prototype with Cubic Float

20kW Prototype with Cubic Float

The float sinks to the bottom during a storm.

Case0 *T*≈10s, *H*≈1.5m

1CCE 2018

Thank you!

Absorption

Resonance

If you start with velocity potential theory, your goal may be absorption.

If you start with forced oscillation theory, your goal may be resonance.

Resonance means Absorption!