

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 - August 3, 2018

The State of the Art and Science of Coastal Engineering

Resonant oscillations in small craft harbours Observations and mitigation modeling examples from Atlantic Canada

Vincent Leys, Coastal Engineer

Halifax, Nova Scotia, Canada - vincentl@cbcl.ca

Co-authors: Victoria Fernandez, P.Eng.

Danker Kolijn, P.Eng.

Coastal issues at fishing harbours

- Aging infrastructure vs. expanding fleets, transient and non-commercial use
- Wave agitation
- Storm surges & sea level rise
- Maintenance dredging
- Loss of winter ice cover → winter wave exposure
- Long wave forcing

Long wave forcing

1. Characteristics

- Referred to as "infragravity" waves
- Low frequency (LF), typically period > 1min
- Due to by meteorological forcing, non-linear swell interaction combined with bathymetry

2. Potential Impacts

- Basin resonance
- Mooring problems (most references on large ports)
- Scour and undertow due to LF currents

Source: USACE CEM

Harbours A, B

Harbour A

Sea surface timeseries, harbour A

Frequency domain

Amplification from analytical equations

Tools to estimate resonant oscillations

ANALYTICAL EQUATIONS

Amplification at resonance = f(basin length, width, depth)

See USACE CEM - For amplification to occur, energy has to be present in sea surface signal

PHASE-RESOLVING BOUSSINESQ WAVE MODELS

Must resolve non-linear interactions between different components of the primary wave spectrum, known to be important for the forcing of long waves.

Low frequency currents

Even relatively small sea surface gradients can cause scour-inducing currents

Harbour D bathymetry

Harbour D currents

Mitigation options

Harbour I – Elongated basin

Wave spectra observations – full record

White noise modeling analysis

Resonance currents

- Strongest through narrow channel sections
- Peaks likely > 1 m/s

Mitigation

- Resonance cannot be significantly reduced by minor harbour layout or entrance modifications
- Design for strong currents

Small harbour resonance – Takeaways

- LF energy is highly variable even within small geographical area (most LF energy observed along Atlantic coast) → Use wave gauges
- 2. Natural harbour frequencies can be reasonably predicted based on basin size, then simulated more accurately with numerical modeling.

3. Mitigation strategies

- Wave dissipating inner harbour slopes
- Design for strong currents → Scour protection, mooring systems
- Substantial rearrangement of the harbour layout.
 If not practical, limit swell penetration and design for LF currents.

Acknowledgements

Public Services and Procurement Canada
Department of Fisheries and Oceans, Small Craft Harbour Program

References

- Rabinovitch A.B. (2010). Seiches and Harbour Oscillations. In: Handbook of Coastal and Ocean Engineering, World Scientific, pp. 193-236.
- Sorensen R., Thompson E.F. (2012). Harbor Hydrodynamics. In: USACE Coastal Engineering Manual, EM 1110-2-1100 Chap. II-7.
- Gierlevsen T., Hebsgaard M., Kirkegaard J. 2001. Wave disturbance modeling in the port of Sines, Portugal with special emphasis on long period oscillations. Int'l Conf. on Port and Maritime R&D Technology, Singapore, 2001.

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 - August 3, 2018

The State of the Art and Science of Coastal Engineering

Thank you - Questions / discussion

Vincent Leys, Coastal Engineer

Halifax, Nova Scotia, Canada - vincentl@cbcl.ca

Co-authors: Victoria Fernandez, P.Eng.

Danker Kolijn, P.Eng.

