

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

The State of the Art and Science of Coastal Engineering

Jetty Design Using Dual Life-Cycle And Physical Modeling Approach

Victor M. Gonzalez, Research Civil Engineer, PE

U.S. Army Corps of Engineers, Engineer Research and Development Center, Coastal and Hydraulics Laboratory

Jeffrey A. Melby, Ph.D., PE

Noble Consultants-G.E.C. Inc.

Lynda L. Charles

U.S. Army Corps of Engineers

William C. Seabergh, PE

U.S. Army Corps of Engineers

Outline

- Introduction
- Modeling approach
- Waves and water levels
- Initial stone sizing
- Physical model
- Life cycle approach
- Conclusions

Introduction

- The advantages of risk-based methodologies over traditional deterministic analyses in coastal design have been well established.
- Nevertheless, probabilistic approaches are often not applied consistently in coastal design.
- A probabilistic design approach using life-cycle analysis and physical modeling is applied for Coos Bay.
- Effects of uncertainties associated with forcing, structural, and stability equations parameters are considered.
- Coastal hazard data sources are now readily available that can facilitate the implementation of these methods.

Coos Bay Jetties Oregon, U.S.A.

North Jetty Head Recession

<u>Authorized length</u>: 9,600 ft (2,926 m)

Last head repair: Year 1989, Sta. 86+40 27.5 US tons, 165 pcf specific weight

<u>Existing configuration</u>: 1:2 slope,25 ft (7.62 m) crest elevation [MLLW],30 ft (9.14 m) crest width.

<u>Current head location:</u> Sta. 82+73 Receded 367 feet since 1989.

Coos Bay Step-Wise Modeling Process

And Validation Methods

Waves and water levels: data sources and storm extraction (Steps 1-2)

- Offshore wave data
 - Buoys: 46029 Columbia River Bar, 46050 Newport, 46229 Umpqua Offshore, and 46015 Port Orford
 - USACE Wave Information Studies: station 83032
- Water levels: NOAA station 9432780 Charleston, OR

- Peaks-over-threshold of WIS 83032
 - 154 events (36-yr record)
 - 4.3 storms/yr
- Extremal analysis (Nadal-Caraballo • and Melby 2012)
 - Detrend WL data, POT Q-Q **Optimization**, GPD, Bootstrapping

84% CL

16% CL

2% CL

 10^{-3}

Historica

INTERNATIONAL CONFERENCE

ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 - August 3, 2018

Waves and water levels: wave transformation and surrogate model (Steps 2-5)

- Wave transformation to the nearshore was performed using CMS-Wave steady-state 2D spectral wave model (Lin et al. 2011, 2008).
- Model runs
 - 4,320 offshore incident wave combinations
 - Top 20 historical storms (by offshore H_{m0})

Offshore Wave Forcing Parameters	Values
Significant Height (m)	1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15
Peak Period (sec)	8, 10, 12, 14, 16, 18, 20, 22
Mean direction (deg)	220, 250, 280, 310, 340
Water Level, MSL (m)	-1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5

- Allows wave transformation within the Monte Carlo simulation storm sampling.
- Compute hazard at save point locations in model domain.

Baltimore, Maryland | July 30 - August 3, 2018

Initial stone sizing (Steps 6-7)

• Seaside armor stability: Maximum momentum flux, Melby and Hughes (2003)

$$a_{m} = \frac{1}{K_{m1}P^{0.18}\sqrt{\cot\theta}} \quad s_{m} \ge s_{mc}$$

$$a_{m} = \frac{1}{K_{m1}P^{0.18}\sqrt{\cot\theta}} \quad s_{m} \ge s_{mc}$$

$$a_{m} = \frac{s_{m}^{P/3}}{K_{m2}P^{0.18}(\cot\theta)^{0.5-P}} \quad s_{m} < s_{mc}$$

$$s_{mc} = -0.0035\cot\theta + 0.028$$

- Stable armor size based on return period wave conditions and water level conditions
- Return period conditions were based on the joint probability distributions of forcing parameters.

	Configuratio	on Crest (1	Crest Elevation (ft) (NAVD88)		Structure Slope (cot θ)		Specific gravity		SP 261 Depth (NAVD 88)		
	1		24.5		2		2.578		18.83		
	2		24.5		2.5		2.578		18.8	3	
	3	24.5		3		2.578		18.8	3		
	4		2 4.5			2		2	734	18.8	3
	5		24.5			2.5		2.734		18.83	
	6		24.5		3			2.734		18.8	3
Configuration				Retur	n Pe	eriod					
		5	10	2	5	50		75	100	200	500
					Median stone weights (Tons)						
	1	35	37	3	9	40		41	41	42	44
	2	25	26	2	8	29		29	30	30	31
	3	19	20	2	1	22		23	23	23	24
	4	32	34	3	6	37		38	38	39	40
	5	23	24	2	6	27		27	27	28	29
	6	18	19	2	0	20		21	21	22	22

Life-Cycle Analysis (Step 8)

• Seaside damage progression (Melby and Kobayashi 2011):

$$\bar{S}(t_n) = 0.5 + 1.3\sqrt{N_{ze} + (N_z)_n}(a_m N_m)_n^5$$
 for $n = 1, S(t_1) > 0.2$

$$\bar{S}(t_n) = 1.0\sqrt{N_{ze} + (N_z)_n}(a_m N_m)_n^5 \text{ for } n > 1$$

$$(N_Z)_n = \frac{t_n - t_{n-1}}{(T_m)_n}$$

 $N_{Ze} = \left(\frac{\bar{S}(t_{n-1})}{(a_m N_m)_n^5}\right)^2$

 Validated (Melby 2018, Panchang and Kaihatu, Ed.) momentum flux equation for jetty data (Pratt et al. 2004)

- Forcing scenarios evaluated:
 - Sequence of historical storms over WIS 36-year record.
 - Monte Carlo sampling of historical storms with random tide for a 50year design life.

Physical Model (Step 9) Experimental Setup

Coos Bay Physical Model:

- 1:55 scale
- 92-ft by 100-ft basin
- Directional spectral wave generator
- 20 Wave gages

Physical model wave forcing

Modeled historical storms:

Storm Name	Date of Storm Peak	Wave Height H _{m0} (ft)	Power Index P (ft²-hr)	Wave Period T _p (sec.)	Time Steps in Model
Storm 1	Jan 4-6, 2008	38.7	46371	19.5	6
Storm 2	Oct 28-29, 1999	37.1	36888	19.5	8
Storm 3	Dec 13-16, 2006	28.9	64250	14.7	20

Wave parameter inputs for physical model for Storm 1:

Prototype Selected Conditions for Storm 1 @ Save Point 340								
	T1	T2	Т3	T4	T5	Т6		
Wave Dir,deg	265	268	273	276	278	278		
Wave Period, sec	12.5	12.5	14.3	16.7	16.7	16.7		
Wave Height, ft	13.98	15.26	25.20	28.41	28.77	28.54		
Water Level, ft [NAVD88]	2.27	2.27	4.89	7.39	7.39	5.94		
The densities of each time above (T4, T2) = T40) was 2.5 here to be a								

The duration of each time step (T1, T2,....T10) was 2.5 hr prototype

Design Wave:

Design Wave	Prototype
θ, deg	283
T _p , sec	20
H _{m0} , ft (SP 347)	35.1
SWL, ft – NAVD88	10.68
Time steps	6

CCE

Physical model experiments

Structure Parameters	All alternatives
W ₅₀ (US Tons)	37
Specific weight (pcf)	175
Slope	1V:2H
Crest width (ft)	40
Crest height (ft, NAVD88)	24.5

	Alternative 1	Alternative 2	Alternative 3
torms	S1, S2, S3	\$1,\$2,DW	\$1,\$2,DW
oe berm V ₅₀ pecific weight op elevation	25 ton 192 pcf -4 ft NAVD88	1 jetty stone high and 3 stone wide apron	25 ton 192 pcf 4 ft NAVD88

A1 A2 A3

Design Optimization (Step 10)

- Physical model damage was well predicted for alternatives 1 and 3 for the main armor (Difference in *S* less than 2)
- The K_m coefficients were revised for Alternative 2 to better capture the observed damage

Damage, S for Alternative 2							
Predicted	9.5	5.7	2.6	1.2			
Measured	9.5	5.4	5.4	1.2			
Damage, S for Alternative 3							
Predicted	4.2	1.6	0.7	0.4			
Measured	4.2	3.6	2.4	0.0			

Armor Alt	Armor Weight W50	Structure Slope cot a	Mean Ultimate Damage S for Region 1	Mean Ultimate Damage S for Region 2	Mean Ultimate Damage S for Region 3	Mean Ultimate Damage S for Region 4
A1	37	2	37	15	7	4
A2	37	2.5	21	9	4	2
A3	40	2	33	14	6	4
A4	40	2.5	18	8	4	2
A5	42	2	30	12	6	3
A6	42	2.5	16	7	4	2
A7	44	2	26	11	6	3
A8	46	2	25	10	5	3

2018

Design Optimization

Armor alternative A1: $W_{50}=37$ t, cot $\alpha=2$, $\gamma_r=175$ pcf and a toe berm configuration

Armor alternative A5: W_{50} =42 t, cot α =2,

 $\gamma_r = 175$ pcf and a toe berm configuration

Conclusion

- Advantages of life cycle modeling:
 - Quantification of damage accumulation over the design life.
 - Quantification of uncertainty.
 - Assessment impact of sea level change on damage.
 - Can be used to assess risk.
- Use of a single design event with an armor stability equation may not be conservative.
- Surrogate model enables expedient wave transformation during analysis.
- The benefits of physical modeling included toe berm assessment and validation of damage model to site conditions.
- Physical model demonstrated that toe berm reduces damage to the structure.

Thank you!

Sea Level Change Example

