

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

The State of the Art and Science of Coastal Engineering

DEVELOPMENT OF MULTISCALE MULTIPHYSICS INTEGRATED SIMULATOR FOR TSUNAMI RUNUP CALCULATION COUPLED WITH STRUCTURE ANALYSIS

Taro Arikawa¹, Katsumi Seki¹, Yu Chida², Tomohiro Takagawa², Kenichiro Shimosako² ¹Chuo University, Japan ²Port and Airport Research Institute, Japan

Total system of Multiscale Multiphysics Integrated simulator

ICCE

2018

History of Development

	STOC-ML	STOC-IC	CADMAS-SURF/3D	CADMAS-2F	STR	ACCE	
1998			Starting of 2 Dimensional Code	Epicenter STOC-IC	STR	2018	
2001			Code Open for 2D	STOC-ML Tsunami Processition	Structure destruction		
2003			Starting 3D	Inundation	CADMAS		
2005	Tomita & Kakin (ST	uma, ARI report OC)	Arikawa et al., JSCE	STOC-IL STOC-IC CADMAS Nonlinear Long wave equations with continuity surface model	CADMAS-2F For edimensional two phase NS el equations with VOF model STR Structure and geo analysis by FEM or DEM		
2009					Arikawa et al.,JSCE (Coupling with 3D)		
2010			Code Open for 3D				
2011				Arikawa et al.,JSCE (Coupling with DEM)		ŝ.	
2014	Arik	awa & Tomita, PARI Re (STOC-CADMAS)					
2017	Arikawa et al.,JSCE (Coupling with Foundation)						
2018	Open all of codes						

How about GUI? For MMI

ICCE 2018

18

The manual and software is available in English

History of Coastal Protection Policy in Japan

- 1956; Seacoast Act
 - Prevention by using seawalls / sea dikes (Line Protection system)
- 1999; Seacoast Act was amended
 - The purpose of the amendment was not only prevention but also environmental consideration and utilization in the coastal zone
 - Protection system changed from the line system to the multiple defense system.

Motivation of our development

- The Japan government changed the coastal protection policy after 2011.
- Before 2011 the hinterland had been protected by seawall basically, but the government recognized the limitation of protective facilities after 2011.
- So, they declared that inhabitants survive the maximum level of the tsunami not only by protective facilities but also by evacuation.
- It is necessary to develop a tsunami evacuation planning tool based on actual damage as much as possible.

Nonlinear wave equation

Navier Stokes equations

For considering more concrete measures

Deterministic approach

Coastal Protective Facilities

Ref: Regarding how to maintain and manage coastal conservation facilities ,MLIT, Oct, 2015

The way of destruction and easiness of destruction are different

Coastal Dike

Seawall

CHUO UNIVERSITY

Detached Breakwaters

Groins

Embankment (Slope Revetment / Parapet wall)

Sea Wall / Breakwater

Breakwater

Multiscale analysis

Coupled with wave propagation simulation

The STOC-CADMAS system

Quasi-3D model (multi-level model) Assumes hydrostatic pressures at each level *Computation load: light* (Arikawa and Tomita, 2016)
 3D model Estimates the free

with

DEM/FEM

water surface with the VOF method

Computation load: heavy

STOC system (Tomita et. al., 2005) CADMAS system (Arikawa et. al., 2005)

CADMAS-SURF/3D

STOC-IC

3D model Calculates the free water surface with a vertically integrated continuity equation *Computation load: moderate*

$STOC(\underline{S}$ torm surge and \underline{T} sunami simulator in \underline{O} ceans and \underline{C} oastal areas)

STOC-ML 3-d Multi-Level constant density RANS model with Eddy Viscosity and hydro-static pressure $p=\rho g(\eta-z)$

STOC-IC 3-d variable density RANS model with Eddy Viscosity closure and Integrated Continuity eq. for free-surface tracking

Equation of Motions Equation of Continuity $\gamma_{v} \frac{\partial u}{\partial t} + \frac{\partial}{\partial r} (\gamma_{x} u u) + \frac{\partial}{\partial v} (\gamma_{y} v u) + \frac{\partial}{\partial z} (\gamma_{z} w u) =$ $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial v} + \frac{\partial w}{\partial z} = 0$ $fv - \gamma_{v} \frac{1}{\rho_{o}} \frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left(\gamma_{x} v_{e} 2 \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial v} \left\{ \gamma_{y} v_{e} \left(\frac{\partial u}{\partial v} + \frac{\partial v}{\partial x} \right) \right\} + \frac{\partial}{\partial z} \left\{ \gamma_{z} v_{e} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \right\}$ Equation of Free Water Surface | Integrate in the z direction $\gamma_{v} \frac{\partial v}{\partial t} + \frac{\partial}{\partial x} (\gamma_{x} uv) + \frac{\partial}{\partial v} (\gamma_{y} vv) + \frac{\partial}{\partial z} (\gamma_{z} wv) =$ $\gamma_{v}\frac{\partial\eta}{\partial t} + \frac{\partial}{\partial r}\int_{-h}^{\eta}\gamma_{x}udz + \frac{\partial}{\partial v}\int_{-h}^{\eta}\gamma_{v}vdz = 0$ $-fu - \gamma_{v} \frac{1}{\rho_{v}} \frac{\partial p}{\partial v} + \frac{\partial}{\partial x} \left\{ \gamma_{x} V_{e} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial v} \right) \right\} + \frac{\partial}{\partial v} \left(\gamma_{y} V_{e} 2 \frac{\partial v}{\partial v} \right) + \frac{\partial}{\partial z} \left\{ \gamma_{z} V_{e} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial v} \right) \right\}$ $\gamma_{v}\frac{\partial w}{\partial t} + \frac{\partial}{\partial x}(\gamma_{x}uw) + \frac{\partial}{\partial v}(\gamma_{y}vw) + \frac{\partial}{\partial z}(\gamma_{z}ww) =$ $-\gamma_{v}\frac{1}{\rho_{v}}\frac{\partial p}{\partial z}+\gamma_{v}\frac{\rho-\rho_{0}}{\rho_{v}}g+\frac{\partial}{\partial x}\left\{\gamma_{x}v_{e}\left(\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}\right)\right\}+\frac{\partial}{\partial v}\left\{\gamma_{y}v_{e}\left(\frac{\partial w}{\partial v}+\frac{\partial v}{\partial z}\right)\right\}+\frac{\partial}{\partial z}\left(\gamma_{z}v_{e}2\frac{\partial w}{\partial z}\right)$ $\gamma_x \gamma_y \gamma_z$: transmissivity in each direction of "x", "y" and "z" $\tau_x = \frac{\rho g n^2 u_b \sqrt{u_b^2 + v_b^2}}{V_a}$

(Tomita et. al.,2005)

(For 3D version, Arikawa et. al.,2005) (SUper Roller Flume for Computer Aided Design of MAritime Structure)

This numerical code is based on the VOF method, and is applicable to not only wave transformation but also interaction of wave, current, structure and foundation. Namely, this numerical flume is replaceable with the laboratory flume, and applicable to the practical works of maritime structure design against wave action.

Equation of Motions

$$\begin{split} \lambda_{v} \frac{\partial u}{\partial t} &+ \frac{\partial \lambda_{x} u u}{\partial x} + \frac{\partial \lambda_{y} v u}{\partial y} + \frac{\partial \lambda_{z} w u}{\partial z} = -\frac{\gamma_{v}}{\rho} \frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left\{ \gamma_{x} V_{e} \left(2 \frac{\partial u}{\partial x} \right) \right\} \\ &+ \frac{\partial}{\partial y} \left\{ \gamma_{y} V_{e} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right\} + \frac{\partial}{\partial z} \left\{ \gamma_{z} V_{e} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \right\} - \gamma_{v} D_{x} u - R_{x} + \gamma_{v} S_{u} \\ \lambda_{v} \frac{\partial v}{\partial t} + \frac{\partial \lambda_{x} u v}{\partial x} + \frac{\partial \lambda_{y} v v}{\partial y} + \frac{\partial \lambda_{z} w v}{\partial z} = -\frac{\gamma_{v}}{\rho} \frac{\partial p}{\partial y} + \frac{\partial}{\partial x} \left\{ \gamma_{x} V_{e} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right\} \\ &+ \frac{\partial}{\partial y} \left\{ \gamma_{y} V_{e} \left(2 \frac{\partial v}{\partial y} \right) \right\} + \frac{\partial}{\partial z} \left\{ \gamma_{z} V_{e} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \right\} - \gamma_{v} D_{y} v - R_{y} + \gamma_{v} S_{v} \\ \lambda_{v} \frac{\partial w}{\partial t} + \frac{\partial \lambda_{x} u w}{\partial x} + \frac{\partial \lambda_{y} v w}{\partial y} + \frac{\partial \lambda_{z} w w}{\partial z} = -\frac{\gamma_{v}}{\rho} \frac{\partial p}{\partial z} + \frac{\partial}{\partial x} \left\{ \gamma_{x} V_{e} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) \right\} \\ &+ \frac{\partial}{\partial y} \left\{ \gamma_{y} V_{e} \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) \right\} + \frac{\partial}{\partial z} \left\{ \gamma_{z} V_{e} \left(2 \frac{\partial w}{\partial z} \right) \right\} - \gamma_{v} D_{z} w - R_{z} + \gamma_{v} S_{w} - \frac{\gamma_{v} \rho^{*} g}{\rho} \\ &+ \frac{\partial}{\partial y} \left\{ \gamma_{y} V_{e} \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) \right\} + \frac{\partial}{\partial z} \left\{ \gamma_{z} V_{e} \left(2 \frac{\partial w}{\partial z} \right) \right\} - \gamma_{v} D_{z} w - R_{z} + \gamma_{v} S_{w} - \frac{\gamma_{v} \rho^{*} g}{\rho} \\ &+ \frac{\partial}{\partial y} \left\{ \gamma_{y} V_{e} \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) \right\} + \frac{\partial}{\partial z} \left\{ \gamma_{z} V_{e} \left(2 \frac{\partial w}{\partial z} \right) \right\} \\ &- \gamma_{v} D_{z} w - R_{z} + \gamma_{v} S_{w} - \frac{\gamma_{v} \rho^{*} g}{\rho} \\ &+ \frac{\partial}{\partial y} \left\{ \gamma_{y} V_{e} \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) \right\} \\ &+ \frac{\partial}{\partial z} \left\{ \gamma_{z} V_{e} \left(1 - \gamma_{z} \right) C_{M} \right\} \\ &R_{x} = \gamma_{z} + (1 - \gamma_{z}) C_{M} \\ &\lambda_{z} = \gamma_{z} + (1 - \gamma_{z}) C_{M} \\ &\lambda_{z} = \gamma_{z} + (1 - \gamma_{z}) C_{M} \\ \end{pmatrix} \\ &R_{z} = \gamma_{z} \left\{ 1 - \gamma_{z} \right\} \\ &K_{z} \left\{ 1 - \gamma_{z} \right\} \right\} \\ &K_{z} \left\{ 1 - \gamma_{z} \right\} \left\{ 1 - \gamma_{z$$

Equation of Continuity $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$

Equation of Free Water Surface (VOF Method)

$$\gamma_{v} \frac{\partial F}{\partial t} + \frac{\partial \gamma_{x} uF}{\partial x} + \frac{\partial \gamma_{y} vF}{\partial y} + \frac{\partial \gamma_{z} wF}{\partial z} = \gamma_{v} S_{F}$$

Volume of Fluid implies the ratio of fluid volume to cell volume

Connections between simulator calculations

STOC-ML STOC-IC CADMAS-SURF /3D-MG Communication by MPI Communication Must not by MPI

All connections are made using MPI communications.

Although all three models are capable of segmenting their respective areas of interest, when different calculation methods are used in the same area (for example, STOC-IC calculations are used in an STOC-ML area), the parent area containing the different calculation methods is regulated to prevent segmentation.

Consequently, when a CS3D area is made sufficiently large, the STOC-IC area that contains it ultimately becomes larger as well, as a single area.

Verification of Accuracy of the system

Image of calculation at Onagawa

Information of each domain

No. Lay er	Grid Size(m)	Ratio of Grid size	Number of grid (X)	Numb er of grid (Y)	Numb er of grid (Z)	Number of grid	Code Name	Numbe r of Core
1	2,916.0	—	500	365	1	182,500	STOC-ML	1
2	972.0	3	510	390	1	198,900	STOC-ML	1
3	324.0	3	405	387	1	156,735	STOC-ML	1
4	108.0	3	900	600	1	540,000	STOC-ML	1
5	36.0	3	930	930	1	864,900	STOC-ML	1
6	12.0	3	1,020	780	1	795,600	STOC-ML	1
7	4.0	3	870	627	1	545,490	STOC-ML	1
8	4.0	1	390	285	13	1,444,950	STOC-IC	3
9	1.0	4	600	800	32	15,360,000	CADMAS- SURF/3D	32

Tsunami Source:

- 1) Fujii-Satake ver. 4.0 model with scaling adjustments to match the tsunami waveform obtained with GPS wave sensors off the southern lwate coast.
- 2) Fujii-Satake ver. 8.0
- 3) Central Disaster Prevention Council(2011)
- 4) Takagawa and Tomita (2012)

Domain 01, ML

Tsunami Source; Takagawa and Tomita 2012

Domain 08, CADMAS-SURF/3D

Comparison of Maximum Inundation height (Tsunami Source: Takagawa andTomita (2012)

Comparison of Flow depth

Flow depth (m), Flow velocity (m/s)

Multiphysics Simulation

Coupled with Structure Analysis

Outline of CADMAS-SURF/3D-STR

(Arikawa et al., 2009)

Basic Equations of STR

$$\rho \frac{\partial^2 u_{si}}{\partial t^2} = \sigma_{ij,j} + \rho g$$

When the object is ground

$$\sigma'_{ij} = \sigma_{ij} + p'I_{ij}$$
$$\rho = (1 - n)\rho_s + n\rho_s$$

For Seepage flow analysis

$$\dot{\boldsymbol{w}} = k \big(-\nabla p + \rho_f \boldsymbol{g} - \rho_f \boldsymbol{\ddot{u}} \big)$$

$$\nabla \cdot \dot{\boldsymbol{w}} = -\nabla \cdot \dot{\boldsymbol{u}} - C_{Kf} \dot{p}$$

σ_{ij} Stress tensor

- u_s Displacement
- ${\it g}$ Gravitational acceleration
- σ'_{ij} Effective stress tensor
- p^\prime Pore pressure
- I_{ij} Identity matrix
- n; Porosity
- ho_{s} Density of soil
- ${oldsymbol{
 ho}_f}$ Density of water
- *w*; Relative displacement of pore water to ground *k*; Permeability coefficient

$$C_{Kf} = n/K_f$$

 K_f ; Bulk modulus of pore water

Breakwaters

Numerical Conditions

CADMAS

dx=dy=dz=0.10 m

STR

Young's modulus : 2.35e11 Poisson's ratio : 0.333 Density test body : 2135 dummy caisson : 2349 Coefficient of friction static : 0.6 dynamic : 0.2

.....

Breakwaters

Physical Experiment

Sea side

Harbor side

Comparisons

.....

The result of the Water Level Difference of the physical experiment is 60.8cm

Multiscale Multiphysics Simulation

Integrated Analysis

Kamaishi Tsunami Breakwater

Topography of Sea Bed at Kamaishi after tsunami

25th , March, 2011

Failure of Breakwater at Kamaishi Bay

TOHOKU REGIONAL BUREAU MINISTRY OF LAND , INFRASTRUCTURE AND TRANSPORT

From video by public people 15:18 (1st positive wave, 32 minutes after)

15:28(negative tsunami started, 42 minutes after)

Verification of Damage of Breakwaters at Kamaishi Bay

Domain Number	Solver	Grid size(m)	Number of Cells (X)	Number of Cells (Y)	Number of Cells (Z)	Number of CPUs
1	STOC-ML	200	108	141	1	1
2	STOC-ML	100	166	110	1	1
3	STOC-ML	50	240	150	1	1
4	STOC-ML	10	1100	690	1	1
5	STOC-ML	10	410	500	1	1
6	STOC-IC	10	330	400	1	1
7	CADMAS-MG	10	260	300	52	70
8	CADMAS-2FC	5	400	480	52	240
STR	STR	Another slides				

Layout of Breakwaters without slit part

Properties for caissons and rubble mound

Туре	Position	Depth	Section Name	Number of Caissons	Material	Young Modulus	Shear Modulus	Poisson ratio	Density [N]
	North	Shallow	1-1	2	Concrete without Porosity	2.35E+10	8.815E+07	0.333	2010
			1-2	1					2040
			2-1	6					2010
			2-2	6					2020
			3-1	6					2030
Coisson			3-2	1					2000
Caisson		Deep	1	3					1980
			2,3	19					1980
	Submarged			13					1900
	South	Shallow	1,2,3	3					2090
		Deep	1,2,3	7					2030
			4	12					1980
Mound					Foundation with Porosity	2.00E+09	7.692E+08	0.333	1900

Friction coefficient between Caisson and rubble mound Static 0.6

Dynamic 0.4

In the section 3-1 at the Northern shallow region, they used Friction enhancement mat Static Friction Coefficient 0.8 Dynamic Friction Coefficient 0.6

Incident wave and Position of the input boundary

Time series water level of GPS wave gauge off the Kamaishi bay at the time of the Great East Japan Earthquake (39° 15′31″E, 142° 05′49″N) was incident from the east side boundary of the STOC calculation region of the outermost area.

In addition, in order to adjust the calculation time, the receding wave excludes the first 15 minutes Also because of adjustment of the wave height acting on the STR structure, the water level was made 1.3 times as the observation.

All Domain

Number of CPUs IC MG 2F STR Total ML 70 240 8 324 5 1 **Physical Time Computational Time** 1015[seconds] 768[hours]

The calculation time is around 3000 times the physical time

Animation

Multiscale and Multiphysics Tsunami Simulator

Damage Situation of Submerged Breakwaters

Arikawa et al.(2012)

Damage Situation of Breakwaters at Northern part

For the future task

Cross section of damage of North Breakwater

Coupled with Sediment Transport Simulator

Why don't you join this development with us? Thank you for your Attention!!

