

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 - August 3, 2018

The State of the Art and Science of Coastal Engineering

Generation of Unusually Large Runup Events

Chuan Li, H. Tuba Özkan-Haller, Gabriel García-Medina*, Robert Holman, Peter Ruggiero

Oregon State University, *Pacific Northwest National Lab

Treena Jensen, David Elson, William R. Schneider

National Weather Services

Study goal

To better understand the conditions that generated these unusually large runup events

Observations

 CO-OPS tide gages
 – water level, wind speed, atmospheric pressure

Observations

- CO-OPS tide gages

 water level, wind speed,
 atmospheric pressure
- NDBC buoys

 wave height, wave period,
 wave energy spectra

Observations

- CO-OPS tide gages
 water level, wind speed, atmospheric pressure
- NDBC buoys

 wave height, wave period,
 wave energy spectra
- DART pressure sensors
 - water level

Summary of videos and reports

3 videos 01/17 ~01:00 UTC

Injury reports 01/16 ~21:00 UTC

1 video 01/16 ~22:30 UTC

Injury report 01/16 ~22:20 UTC

Summary of videos and reports

3 videos 01/17 ~01:00 UTC

Injury reports 01/16 ~21:00 UTC

1 video 01/16 ~22:30 UTC

Injury report 01/16 ~22:20 UTC

Possible Causes

- Earthquake
 - no seismic activities detected

Possible Causes

- Earthquake
 - no seismic activities detected
- Meteotsunami
 - generated by low pressure
 front moving at shallow water
 wave speed

Possible Causes

- Earthquake
 - no seismic activities detected
- Meteotsunami
 - generated by low pressure
 front moving at shallow water
 wave speed
- Other causes?

Satellite IR

Jan 16, 12:00 – Jan 16, 17:00

Summary of Jan 16, 2016

Very large runup events were observed along Washington,
 Oregon, and northern California.

Summary of Jan 16, 2016

- Very large runup events were observed along Washington,
 Oregon, and northern California.
- The timing of the initial events align with arrival of sharp swell fronts

Summary of Jan 16, 2016

- Very large runup events were observed along Washington,
 Oregon, and northern California.
- The timing of the initial events align with arrival of sharp swell fronts
- Are similar relationships between large runups and sharp swell fronts observed at other times?

Another occurrence of large runup events: January 18, 2018

Another occurrence of large runup events: October 11, 2014

On generation mechanism

Period of ~5 min suggests possible link to wave groups

On generation mechanism

- Period of ~5 min suggests possible link to wave groups
- Possibly from large elevation of mean water level at the swell front due to radiation stress

On generation mechanism

- Period of ~5 min suggests possible link to wave groups
- Possibly from large elevation of mean water level at the swell front due to radiation stress
- Possibly from interaction of faster swells and slower wind waves over a large distance, analogous to bore-bore captures

 Several very large runup events were observed, captured on videos, and described in injury reports on January 16, 2016 along Washington, Oregon, and northern California.

- Several very large runup events were observed, captured on videos, and described in injury reports on January 16, 2016 along Washington, Oregon, and northern California.
- These events were not caused by earthquakes and unlikely caused by meteotsunamis

- Several very large runup events were observed, captured on videos, and described in injury reports on January 16, 2016 along Washington, Oregon, and northern California.
- These events were not caused by earthquakes and unlikely caused by meteotsunamis
- The timing of the initial events align with arrival of sharp swell fronts

- Several very large runup events were observed, captured on videos, and described in injury reports on January 16, 2016 along Washington, Oregon, and northern California.
- These events were not caused by earthquakes and unlikely caused by meteotsunamis
- The timing of the initial events align with arrival of sharp swell fronts
- Water level changes at the coast corresponds with swell energy offshore

Thank you!

Questions/comments?

References

Monserrat, S., Vilibić, I., Rabinovich, A. B. 2006. Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band. *Natural Hazards and Earth System Sciences*. 1035-1051

García-Medina, G., Özkan-Haller, H. T., Holman, R. A., Ruggiero, P. 2017. Large runup controls on gently sloping dissipative beach. *Journal of Geophysical Research: Oceans*. 10.1002/2017JC012862

NOAA Tides and Currents: https://tidesandcurrents.noaa.gov/tide predictions.html

National Data Buoy Center: https://www.ndbc.noaa.gov

References

YouTube videos:

https://youtu.be/S6GJI6i6c1k

https://youtu.be/HSCCe1y6-b8

https://youtu.be/F0a DDzEk-c

https://www.youtube.com/watch?v=RPypT9dOvSY

https://youtu.be/JMYLvSsWR g

https://www.youtube.com/watch?v=IGSGNpfRFqQ

https://www.youtube.com/watch?v=87NlwSVnevI

