

Kevin Hanegan, Adrian Pearson, and Chris Williams
Moffatt & Nichol, New Orleans, LA
ICCE 2018, Baltimore

Creative People, Practical Solutions.®

601 Poydras St., Suite 1860 New Orleans, LA, 70130 504-648-3560

Creative People, Practical Solutions.®

Presentation Outline

- Harbor History and Layout
- Project Overview
- Determining Offshore Wave Conditions
- Local Wave Modeling
- Wave Transmission
- Informing Project Design

Harbor History and Layout

- Previously a 600-slip fixed dock with concrete decks and timber piles
- Protected by solid fill + riprap berm (average crest elevation of +3.5 ft), with concrete bulkheads and seawalls near harbor entrance
- WPA project constructed in 1941
- Host to 2nd oldest yacht club in the country
- Devastated by Hurricane Katrina

Post-Katrina

MYH Wave Exposure

Breakwater Submergence

Date	Peak water level [ft. NAVD88]	Depth of water over breakwater [ft.]*	Event	
August, 2005	11.5	8.1	Hurricane Katrina	
August 30, 2012	6.3	2.9	Hurricane Isaac	
September 12, 2008	5.3	1.9	Hurricane Ike	
September 2, 2008	4.6	1.2	Hurricane Gustav	
September 3, 2011	4.1	0.7	Tropical Storm Lee	
October 26, 2015	3.6	0.2	Severe Thunderstorm	

^{*}Note: the average breakwater elevation is taken to be +3.4 ft. NAVD88.

Offshore Wave Conditions – Operational

- Operational-level conditions
 - Up to 25-yr Return Period
 - 20-yr hindcast of waves with measured wind and water levels at site (NOAA New Canal Station)
 - Mike21-Spectral
 Wave Model

Offshore Wave Conditions - Extreme

Source: US Army Corps *Elevations for Design of Hurricane Protection Levees and Structures: Lake Pontchartrain and Vicinity...* Appendix A (2014)

- Taken from USACE (2014)

 Elevations for Design of Hurricane

 Protection Levees and Structures: Lake

 Pontchartrain and Vicinity
- JPM-OS methodology ADCIRD+STWAVE

RP (yrs)	Hs (ft)	Tp (s)	WL (ft, NAVD88)
50	5.9	6.4	+7.5
100	8.2	7.2	+8.7

Local Wave Modeling

- Model propagation of offshore waves into harbor
 - Robust diffraction/reflection formulations
 - Mike21-Boussinesq Wave
- Operational wave conditions
 - Assumed that significant wave energy would not be transmitted over the breakwater
- Extreme wave conditions
 - Need to account for wave energy transmitted over breakwater

Wave Transmission (1)

- Due to difficulty of modeling transmission processes directly on larger scale, we used hybrid analytical-numerical approach
- Wave transmission over lowcrested structures (negative freeboard)
 - EurOtop 2016 empirical equations
 - Eqn. 5.67 for low, wide-crested rubble mound breakwaters
 - Eqn. 5.63 for smooth, low-crested structures with narrower crests

USACE (2008) Coastal Engineering Manual

 For 100-yr RP conditions, the more conservative equation gives K_t = 0.46 using an average breakwater crest and width

• Tune numerical porosity of breakwater to match goal K_t for 0° incidence case at narrower breakwater sections

Extreme 100-yr RP Conditions: Hs = 8.2 ft, Tp = 7.2 s, MWD = 0 deg. N

Extreme Conditions Results

Significant Wave Height, Hs [ft]

Water Surface Elevation, WL [ft, NAD88]

Extreme Conditions Results: Max from all directions

Extreme 100-yr RP Conditions:

Max from All Wave Incident Directions: Hs = 8.2 ft, Tp = 7.2 s

Hs [ft] 3.1 - 3.2

2.4 - 2.7 3.3 - 3.5 2.8 - 3.0 3.6 - 3.8

Operational and Extreme Results

Return Period (yrs)	$ m H_{s}$ within harbor (ft)		H _{max} within harbor (ft)		Peak Period (s)
	Max	Min	Max	Min	
1	1.1	0.7	1.7	1.2	3.4
2	1.3	0.8	2.0	1.4	3.6
5	1.6	1.1	2.6	1.9	3.9
10	1.9	1.3	3.0	2.2	4.1
25	2.3	1.6	3.6	2.7	4.4
50	2.8	2.1	4.3	3.4	6.4
100	3.6	2.7	5.1	3.9	7.2

Potential Breakwater Modifications

EurOtop eqns. for transmission over low-crested structures

Sea Level Rise

- Land subsidence rate of 7.5 mm/yr.
 - West Shore Lake Pontchartrain Hurricane and Storm Damage Risk Reduction Study (US Army Corps of Engineers, 2014).
- Global mean sea level rise rate of 1.7 mm/yr.
 - Intergovernmental Panel on Climate Change (IPCC, 2014)
- Projection equations, which account for accelerated rates of mean sea level rise and subsidence
 - Engineering Technical Letter 1100-2-1: Procedures to Evaluate Sea Level Change (US Army Corps of Engineers, 2014).

• Recommend using **Intermediate** value for design, while also assessing cost implications for accommodating **High** scenario

Planning for the future

- Conservative, scientifically sound sea level rise and subsidence projections
- Future hurricane waves and surge based on HSDRRS project – most rigorous data available
- Pile caps (how high docks can rise with surge)
 are set at +22' NAVD88 more than 10.5'
 higher than Katrina's high water mark at MYH

