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Risk = Hazard X Negative
Probability Consequence
Hazard Analysis Damage Analysis
2000’s PTHA Probabilistic Tsunami Probabilistic Tsunami
Hazard Analysis K PTDA Damage Analysis
2010’ PSTHA Probabilistic Seismic N PSTDA Probabilistic Seismic
and Tsunami Hazard and Tsunami

Analysis Damage Analysis
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Methodology of PTHA, PTDA

Tsunami Hazard Assessment Tsunami Damage Assessment
(1) Defining Tsunami (4) AEP curve a?nd | (5) Fragility'Curve (6) Building
Events Hazards mapping Analysis Classification
1 1. Tax lot
; max' C°|W‘?'Tept—h 2. Local photo/images.
A 4 3: M:i: Meo(r)rftle:tum flux 3. Field Surveys
Generation g: SLZ'Z;'J;’“G |
Propagation
(3) Probabilistic (7) Probabilistic
Inundation »| Tsunami Hazard Damage Estimation
Analysis
(2) Tsunami Modelling
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Methodology of PTHA, PTDA

Tsunami Hazard Assessment Tsunami Damage Assessment
(1) Defining Tsunami (4) AEP curve a?nd | (5) Fragility'Curve (6) Building
Events Hazards mapping Analysis Classification
PTHA 1 1. Tax lot
; max' C°|W‘?'Tept—h 2. Local photo/images.
A 4 3: M:i: Meo(r)rftle:tum flux 3. Field Surveys
Generation e ,,
Propagation
(3) Probabilistic (7) Probabilistic
! Inundation »| Tsunami Hazard Damage Estimation
Analysis
(2) Tsunami Modelling

PSHA using conventional GMPE 4
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1) Inversion model results
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2) New tsunami slip model using a
Gaussian distribution
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Park, H. and Cox, D.T. (2016) “Probabilistic Assessment of Near-field Tsunami Hazards: Inundation Depth, Velocity, Momentum
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¥/dl

Name Mw De L dL W

[-(] [m] [km] [km] [km]
2004 Indian Ocean 9.3 30 1400 100 200
2007 Kuril 81 20 200 8 40
2010 Chile, v1 8.8 13 600 50 187
2010 Chile, v2 88 22 600 50 150
2011 Tohoku, v1 9.0 32 600 25 260
2011 Tohoku, v2 9.1 59 500 25 200
2011 Tohoku, v3 9.0 69 550 50 200

Flux, Arrival Time, and Duration Applied to Seaside, Oregon,” Coastal Engineering, 117, 79-96
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Bathymetry of two numerical models
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Logic tree model

Slip distribution at CSZ

< 3 Magnitudes > < 3 Slip shapes > < 8 Location of peak slip >
(3 Along strike direction) (1 Down dip direction)

o =0.15
(0.125)

Mw. 92
(1/19 = 0.06)

o =025
(0.125)
o =035
(0.125)
o' = 0.45
(0.125)

(0.25)

CSZ Mw. 9.0
Events (13/19 = 0.68)

o' = 0.55
(0.125)
(0.25) a = 0.65

5= 0.52 (0.125)
o =075
(0.125)

o =0.85
(0.125)

Mw. 8.8
(5/19 = 0.26)

(0.25)
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Calculating annual exceedance probability (AEP) of IMs

Poisson arrival process (Cornell, 1964) with
average occurrence rate of v

P[h,, >h]=1-¢™

107 ¢

AEP =0.001 ~ 1,000 yr 107 ¢
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(4) Hazards map
Hazards map at Seaside, OR

Example: Max. Flow depth (h

max)

2 1 | 2 |

3 ...... _ . 3 -

4 T | 4 |
=

6 1 | ° |

W " AEP=0.002 S, "~ AEP =0.001 ~AEP = 0.0004

8 Sl ~500yr A SR 81 T | ~2,500yr
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(4) Hazards map
Hazards map at Seaside, OR

Example: Max. Velocity (V

max)

0 1 2 3 4 5 6 7 8 9 10 m/s

. ) e
AEP =0.002 - © (¢ AEP=0.001 ~ [ AEP=0.0004]
~500yr, . N/ ~1,000yr | { ~ 2,500 yr,

5 6 7 8 9 S 6 7 8 9 5 6 7 8 9
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Hazards map at Seaside, OR

Example: Max. momentum flux (M

School of Civil and Construction Engineering

max)

3 4
4 4
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< 1
>0

AEP = 0.002

...............
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(4) Hazards map
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Hazards map at Seaside, OR

....................

AEP = 0.002

~ 500 yr

9

Example: Duration time (7b)

o

...........

Y,
o

School of Civil and Construction Engineering

(4) Hazards map

$ AEP=0.001
C ~1000yr -

. ~2500yr

o

5 6 7 8 9
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PTHA Comparison for Newport, Oregon

Park and Cox, 2017 ASCE 7-16 DOGAMI “M”

e b e Fenpal, B0 M) i i s <R Liag

x (km)

Figure 7: Comparison of maximum extent of tsunami inundation in Newport, Oregon, for (a) present study with AEP = 0.0004,
(b) ASCE Tsunami Design Geodatabase (TDG) for AEP = 0.0004, and (c) DOGAMI TIM, ‘M’ scenario (b and c are courtesy of
ASCE TDG and Oregon Department of Geology and Mineral Industries).
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2. Joint Distributions of IMs

- Correlation or relationship among h__ and other IMs

max

hmax VS Vmax hmax VS I\/Imax hmax VS TD hmax VS TA
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Methodology of PTHA, PTDA

Tsunami Hazard Assessment Tsunami Damage Assessment
(1) Defining Tsunami (4) AEP curve a?nd B | (5) Fragility'Curve _ (6) B_u_ildi.ng
Events Hazards mapping Analysis ! Classification
+ | E 1. Tax lot
1 Max. Flow depth i 2. Local photo/images.
,, ey N PTDA 3 Fieldsurveys
Generation g: SLZ'Z;'J;’“ ! j _________________________________
 Lifeline Infrastructure .
Propagation o . Transportation
(3) Probabilistic (7) Probabilistic o \Water
Inundation »| Tsunami Hazard Damage Estimation| '+ power (EPN)
Analysis '« Communication |
(2) Tsunami Modelling

PSHA - PSDA > PSTDA 15
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Tsunami Hazard Assessment

(1) Defining Tsunami (4) AEP curve and (5) Fragility Curve
Events Hazards mapping Analysis
1. Tax lot
M Flow dapch, 1. Local phote/fimages.

. Mau. Velocity 3 o -
3. Max. Momentum flux 3. Fleld surveys

. . Arrival teme
Generation . Duration

{3) Probabilistic (7) Probabilistic
Tsunami Hazard Damage Estimation

Analysis

2) Tsunami Maodelling
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(6) Building classification
Three tools for building information at study area

1. Tax lot (Stat_Class, Year) 2. Pictures from Google map 3. Fields survey
(- B street view Rapid Visual Screening (RVS)

) ek
H H H Rapid Visual Screening of Buildings for Potential Seismic Hazards Level 1
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(7) Damage analysis
Example of building damage assessment (at AEP = 0.001)

Photo taken by Hyoungsu Park, at Seaside Field trip (July, 14, 2015)

lll |
‘ Illllillll\ll\\\l\\\\\\\\\\\\\\\\\

[ Me building [ No building [ No Building
| w1 [ stary [ Pre-Code

[[]2 stories [ Low-Code
DW2 [ 3 stories I Moderate-Code
Ml [ 4 stories M High-Code

I 5 stories

RC I More than 6 stories MOderate-CC)de
5 stories

hmax [M]
o
mEmo.0-05
Eo05-1.0
Ei10-15
015-20 = o e | ! e S
[20-25 e g T S g . BS s
025-30 : ¥ Rt
]30-35
[C135-40
340 -45
E45-50
E5.0-60
m6.0-70
@m7.0-80 . = - Siwie
Ems.0-90 20
B0 -100

4m
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(7) Damage analysis
Example of building damage assessment (at AEP = 0.001)

Mo building [1 Mo building [ Mo Building
[11 story [ Pre-Code
Wi .
| [12 stories [JLow-Code 0.8
w2 [ 3 stories [ Moderate-Code
[ el [ 4 stories M High-Code
[ 5 stories

RC I More than 6 stories MOderate-CC)de 06 -
5 stories o

-

RC, 2 stories ™
-~

”
”

,° RC,3>storie

hmax [M] 04r¢

0

@00 -05
] mmos-10
E10-15 0.21

4m

@15-20
L1 m@20-25
025-30
C130-35 0 . !

[135-40 0 5 10 15
40 - 45
@45-50 h (m)

E50-60 . l | G

mm60-70 ! Sy ‘ . ld

mm7.0-80 . ey il o BT
s0-90 . .
mo0-100 Fragility curves (Suppasri et al., 2013) for collapse damage
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Example of building damage assessment (at AEP = 0.001)

[ Ne building [ No building
w1 [11 story [ Pre-

D W2 [ 3 stories

I 5 stories

5 stories

4m

[ Mo Building

Code

[[]2 stories [ Low-Code
I Moderate-Code
| =l [ 4 stories M High-Code

RC I More than 6 stories MOderatE'Cc

hinax [M]

=0

Eo0.0-05
0.S5-10
E10-15
E15-20
0120-25
C25-30
[C130-35
C135-40
CJ4.0-45
4.5-50
E5.0-60
mm60-70
B7.0-80
ms0-90
9.0 -100

de

0.8

067

04r

0.2

-

RC, 2 stories ™
-~

-~
”

,” RC, 3> storie

Fragility curves (Suppasri et al., 2013) for collapse damage

(7) Damage analysis
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Example of building damage assessment (at AEP = 0.001)

[ Ne building [ No building
[11 story

-m []2 stories

w2 [ 3 stories

| =l [ 4 stories
I 5 stories

1 story

[ Mo Building
[ Pre-Code
[ Low-Code

I Moderate-Code

I High-Code

do

0.0 -

0.5 -

E10-

E15-

=20-

/a25-

C130-
35-
C140-

mas-

Es5.0-
6.0 -

m7.o0-

mso-

oo -

Wl I More than 6 stories Pre—COde

hinax [M]

0.5
1.0
15
20
25
30
35
40
45
5.0
6.0
10
80
9.0
100

Photo taken by Hyoungsu Park, at Seaside Field trip (July, 14, 2015)

(7) Damage analysis
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(7) Damage analysis
Example of building damage assessment (at AEP = 0.001)

Fragility curves (Suppasri et al., 2013)
for Collapse damage

Wood 1 and 2
== - Damage ratio

30
RC, 2 stories =~ | | g a0c
, 2 stories [2120 - 40%
_ | [40 - 60%
. I 60 - 80%
, 7 RC,3>stories I 80 - 100%

o
[ No building [ Mo building [ Mo Building 90%
[11 story [ Pre-Code
Wi .
L [12 stories [JLow-Code 0.8
w2 [ 3 stories [ Moderate-Code
[ el [ 4 stories M High-Code
I 5 stories

Wl I More than 6 stories Pre—COde 06 |
1 story

hmax [m] 04F
N\ :r 1 o
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] [ m@10-15 0.2
E15-20
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[13.0-35 ' L
ll [335-40 0 5 10 15 20
340 -45
E34.5-50 h (m)
@m50-60
@m60-70
Em70-80
80 -90
90 -100

5m

24




Probability damage at AEP = 0.001 (~1,000 year event)
at CSZ with S2013 model (h Collapse DS)

max’

| [
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B0 - 20%
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Methodology of PTHA, PTDA

Tsunami Hazard Assessment Tsunami Damage Assessment
(1) Defining Tsunami (4) AEP curve a?nd | (5) Fragility'Curve _ (6) B_u_ildi.ng
Events Hazards mapping Analysis ! Classification
* E 1. Tax lot
; max' f/'olw‘?'Tem—h i 2. Local photo/images.
,, 2 vl 3 Fieldsurveys
Generation g: SLZ'Z;'J;’“ j _________________________________
 Lifeline Infrastructure .
Propagation o . Transportation
(3) Probabilistic (7) Probabilistic o \Water
Inundation »| Tsunami Hazard Damage Estimation| | '+ power (EPN)
Analysis '« Communication |
(2) Tsunami Modelling

PSHA > PSDA >~ PSTDA
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Merging Tsunami and Earthquake damage assessment

- Can utilize FEMA Hazus methodology to combine damage from multi-hazard events

P[Cstr| EQ+TS] = P[Cstr| EQ] + P[Cstr| TS] - P[Cstr | EQ] P[Cstr| TS] + °
- P[Cstr|TS])

(P[2Esrr| EQ] - P[Cstr| EQ]) (P[=Esr| TS] FEMA, 2013
From ‘Complete’ damage states Portion of ‘Complete’ damage from ‘Extensive’ damage states

Earthquake Earthquake

o :




Structural Damage SM (GS) SM (GD) Tsu SM (GS)+Tsu

AEP=0.01
100 years

AEP=0.004
250 years

AEP=0.002
500 years

AEP=0.001
1,000 years

AEP=0.0004
2,500 years,

Civil and Construction Engineering
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[0
J0-0.01
[]0.01 -005
[J005-01
E01-05
Eos5-1.0
10-20
20-40
40-70
7.0-100

Direct loss Estimation
Dollar Loss = Dollar value of building X Damage ratio

Tsunami
Loss total: 1,038 M

I B pmewn SN
&y fofe) Y
my Sk 0 el

3]0

B0 -20%
120 - 40%
[140-60%
60 - 80%
Il 80 - 100%

T,

REEEE TSU + EQ

Loss total: 1,230 M

TSU+EQ
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Hazards and Disaster Debris types

Debris Forecasting Natural

School of Civil and Construction Engineering

Anthropogenic

1. Whatis it?

. . = (17
2. How muchis it? Y & 9 S
o 2 3 = = S
= |
3. Whereiis it: E E B E -'I% o y
e = 3 e —= [
= & S o T = =
Hurricane x X X x X 4 X
Tsunami X X X X X b4 X
Flood X X ¥ » % 3 ¥
Tornadoes X X X X ® X
_ Earthquake X X X X
From FEMA 325, Figure
6.2 — Typlcal Debris WUI Fire ¥ % ¥ ¥
Streams for Different
Types of Disasters Ice Storm X X
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Multi-hazard
(PSTHA)

AEP of IMs for Earthquake

0.2 0.4 06g 0.8 1 12g

3\

V;‘ 3| p) V;

x (km)
5AEP of IMs

10m

MH Damage and Loss
—>
(PSTDA)

School of Civil and Construction Engineering

EQ+TS

U

Debris Forecast

Generation & Advection

Structural

y (m)

8000 E@d flow annimation (Large)

7000

44.5 min,

1000
4000 5000 6000 7000 8000 9000
x(m)

y (m)

Debris flow annimation (Medium)

x (m)
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Focus on
critical facilities
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Methodology of Debris Quantification

L REE
la S E ]
7| O3 No structure
owl

Based on Hazus-MH 2.1 (Earthquake)

3 3 stories
M@ 4 - 5 stories
M > 5 stories

aw2
Z B éq ORra

B Low Code
I Moderate Code
M High Code

Single house

For structural debris For non-structural debris

4 4
EDFg = zPS(i) - DFs(i) | fs(r)dr EDFys = zPNS(i) - DFys(@) | fus(r)ar

L i
DWs = (EDFsp - Wsr + EDFs npWs yp) - (SQ - FL) DWys = (EDPFysp - Wysr + EDFysngWysnr) - (SQ - FL)
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Debris Forecast Model: Quantification of debris at a single building

EDF for structural damage

4 EDF, Expected debris fraction from structural damage
EDFs = Zps(i) - DFs(i) | fs(r)dr i Four damage states (slight, moderate, extensive and
i complete)
P4(i) Probability of structural damage at the ‘i’ damage state.
DF¢(i)  Structural debris fraction (percent) of unit weight
EDF for non-structural damage at the ‘i’ damage states.
fs(r) Structural debris fraction (percent) of unit weight

at the ‘i’ damage states.

4
EDFy¢ = ZP i) - DFyg(Q) r)dr
NS i vs (1) vs(W) | fus(r) NS Subscription for non-structural damage variables.
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Debris weight from structural damage DW.  Weight of debris from structural damage

DW, = (EDFS,F Wy p + EDFS,NFWS,NF) . (SQ - FL) Wq Weights of debris per 1000 ft? of floor area from
structural damage

: : S foot f a buildi
Debris weight from non-structural damage SQ guare footage ot a buliding

FL Number of floor levels (stories)
DWys = (EDFysr - Wys,r + EDFysneWysnr) - (SQ - FL)
_ - F Subscript for floating debris
Total Weight of Debris NF Subscript for non-floating debris
TDW = DWS + DWNS
Disaggregation to floating or non-floating debris Total Volume of Debris
TDWp = EDFsp - SQ - Ws g + DFysr - SQ - Wysp T'DV =TDWr - pp + TDWyF - pnF

TDWynp = EDFgnp - SQ - Wsng + DEysnr - SQ - Wysnr



OREGON STATE UNIVERSITY School of Civil and Construction Engineering

Tablel. Floatable debris generated from structural and non-structural elements (in percent of weight)

Building DF; ¢ (%) DFys,r (%)
Type Slight Moderate Extensive Complete Slight Moderate Extensive Complete
(i=1) (i=2) (i=3) (i=4) (i=1) (i=2) (i=3) (i=4)
W1 0.0 5.0 34.0 100.0 2.0 8.0 35.0 100.0
W2 0.0 6.0 33.0 100.0 2.0 10.0 40.0 100.0
C1 0.0 0.0 0.0 100.0 1.0 7.0 35.0 100.0

Table2. Non-Floatable debris generated from structural and non-structural elements (in percent of weight)

Building DF; nr (%) DFys.nr (%)
Type Slight Moderate Extensive Complete Slight Moderate Extensive Complete
(i=1) (i=2) (i=3) (i=4) (i=1) (i=2) (i=3) (i=4)
w1 0.0 3.0 27.0 100.0 0.0 0.0 0.0 100.0
W2 0.0 2.0 25.0 100.0 0.0 10.0 28.0 100.0
C1 0.0 5.0 33.0 100.0 0.1 8.0 28.0 100.0

Table 3. Unit weight (tons per 1000 ft?) for structural and non-structural elements for building types

Building Floatable (Wood, Brick, and Non-Floatable (RC and Steel) SQ
Type others) (Footage of
Structural Non-structural Structural Non-structural  building/1000ft?)
W1 6.5 12.1 15.0 0.0 1.5
W2 4.0 8.1 15.0 1.0 2.5

C1 0.0 53 98.0 4.0 3.0
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Advection of buoyant debris from PSTDA at AEP = 0.0004 (2,500 yr)
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Discussion/Future work

PSTHA

e Uncertainty in tsunami inundation due to built environment
 New PTHA for each mitigation measure? (eg. seawall)

PSTDA

* How accurate are tsunami fragilities?
* Methodology to combine seismic and tsunami damage?
e Extending from damage to economic loss and loss of functionality

Debris

e Debris impact on building damage (cascading effects)?

* Debris interaction with fluid?

* Including natural debris (vegetation, sand) and other (vehicles, boats, etc.)
* Need for debris collision for large vessels

Thank you!



