

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

The State of the Art and Science of Coastal Engineering

Hindcasting of surge and wave on Hokkaido coasts by a winter low pressure system

using surge-wave coupled sea bottom and surface stresses in SuWAT

Sooyoul Kim; Tottori University **K., Kumagai, D., Tsujio and T., Tsuji**; Pacific Consultants Co. Ltd. **Hajime Mase**; Kyoto University

Background

- A Winter Low Pressure System (or Extratropical Cyclones) (WLPS): similar impacts to a typhoon.
- * A WLPS In Hokkaido, Japan
 - * 16-17 December 2014
 - * 1.75 m high surge level
 - vast areas of flooding on the Kushiro coast
 - coastal facilities broken
 - New record-break surge level due to WLPS since record-break level of 0.9 m in 1994

Consultants

CCE

2018

Purpose

- Understanding the WLPS event in 2014
- Understanding surges and waves due to WLPS 2014
 - * Hindcast: surges and waves
 - using a coupled model of surge, wave and tide
 - * no consideration: tide

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 – August 3, 2018

Consultants

Winter Low Pressure System 2014

140

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 – August 3, 2018

Hindcasting surges and waves

- The coupled model of surge, wave and tide; SuWAT
- Wave dependent drag coefficient capped at specific wind speeds
- wave-current interaction-induced bottom stress

The drag coefficient, C_d , in sea surface laye

- * Wave growth term in SWAN $S_{in}(\sigma, \theta) = A + BE(\sigma, \theta)$
 - * A: the linear wave growth term
 - * BE: the exponential wave growth term

The drag coefficient, C_d , in sea surface layer

* Wave growth term in SWAN

 $S_{\rm in}(\sigma, \theta) = A + BE(\sigma, \theta)$

- * A: the linear wave growth term
- BE: the exponential wave growth term
- * Cd in the linear wave growth term

* Transfer U10 to U* the friction velocity $(u_*^2 = C_D U_{10}^2)$ Wu (1982): $C_D = \begin{cases} 1.2875 \times 10^{-3} & \text{for } U_{10} < 7.5 \text{m/s} \\ (0.8 + 0.065U_{10}) \times 10^{-3} & \text{for } U_{10} > 7.5 \text{m/s} \end{cases}$ Zijlema et al (2012): $C_D = (0.55 + 2.97\tilde{U} - 1.49\tilde{U}^2) \times 10^{-3}$

Turbulent stress $\tau_t = \rho_a (\kappa z)^2 \left(\frac{\partial U}{\partial z}\right)^2$

The drag coefficient, C_d , in sea surface laye

Wave growth term in SWAN

 $S_{
m in}(\sigma, heta) = A + BE(\sigma, heta)$

* BE: the exponential wave growth term

 * Janssen's wave dependent Cd in the exponential wave growth term (1991) and following Mastenbroek et al.(1993) accounting for sea state

* Wind profile:
$$U(z) = \frac{u_*}{\kappa} \ln \left(\frac{z + z_e + z_0}{z_e} \right)$$

* Effective roughness: $z_e = \frac{z_0}{\sqrt{1 - \tau_w/\tau}}$

* Wind speed-capped Wave dependent Cd

Estimated wave dependent C_d without levelling off due to Typhoon Hainan 2013

鳥取大学 Tottori University

onsultants

The best-fitted wave dependent C_d to the 2nd-order polynomial due to Typhoon Hainan 2013

Kim et al., 2015 Ocean modelling

- Threshold for a levelling off based on measurements
 - * 33 *m*/*s* : Powell et al. (2003)
 - * 30-40 *m/s* : Donelan et al. (2004)

Pacific

onsultants

14

* 22-23 *m/s* : Black et al. (2007)

CE

2018

Levelling Wave dependent Cd off in the exponential term due to Typhoon Hainan 2013

* Wind profiles only in the exponential term

Levelling off in the exponential terms

- * Levelling off the wave dependent Cd in the exponential wave growth term $U(z) = U(z) \text{ for } U(z) < \tilde{U}_{10}$
 - Step functions

 $U(z) = \tilde{U}_{10}$ for $U(z) \ge \tilde{U}_{10}$

Wind profile

$$U(z) = \frac{u_*}{k} \ln\left(\frac{z + z_e + z_0}{z_e}\right), \text{ if } U(z) < \tilde{U}(z)$$
$$\tilde{U}(z) = \frac{u_*}{k} \ln\left(\frac{z + z_e + z_0}{z_e}\right), \text{ if } U(z) \ge \tilde{U}(z)$$

* Wind speed-capped $C_d = u_*^2 / U(z)^2 = \kappa / \ln\left(\frac{z + z_e + z_0}{z_e}\right)$, if $U(z) < \tilde{U}(z)$ Wave dependent Cd

$$C_d = u_*^2 / \tilde{U}(z)^2 = \kappa / \ln\left(\frac{z + z_e + z_0}{z_e}\right), \text{ if } U(z) \ge \tilde{U}(z)$$

Scattered wave dependent C_d with levelling off

due to Typhoon Hainan 2013

The best-fitted wave dependent *Cd* to the 2nd-order polynomial due to Typhoon Hainan 2013

The wave¤t interaction-induced bottom drag

* Conventional method

Manning number,
$$n$$
,
 $\tau_b = \rho_w g n^2 \frac{\vec{Q} |\vec{Q}|}{h^{7/3}} \quad f_c = 8 \times \frac{g n^2}{h^{1/3}} \quad \tau_b = \rho_w \frac{f_c}{8} \frac{\vec{Q} |\vec{Q}|}{h^2}$

* Signell et al., 1990 & Davies and Lawrence, 1995

$$k_{bc} = k_{b} \left[C_{1} \frac{U_{*_{cw}} A_{b}}{U_{w} k_{b}} \right]^{\beta} \quad f_{c} = 2 \left[\frac{K}{\ln(30 z_{r} / k_{bc})} \right]^{2}$$

Averaged Manning Number converted from f_c due to Typhoon Haiyan 2013

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 – August 3, 2018

Cal. Conditions

980

140

140

Calculation domains

Grid size: 677 m x 927 m

Grid size: 226 m x 309 m

CCE

201

22

Consultants

Wind and pressure fields by JMA

5:00 17th Dec.

京都大:

YOTO UNIVERSITY

• Max. Wind speed: 30.7 m/s

Consultants

23

30m/s

- The wind and pressure field
 - when the minimum drop of pressure is observed in
 - Nemuro.

u: -20-15-10-5 0 5 10 15 20 25(m/s)

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 – August 3, 2018

Results

• Rausu

Hanasaki ^oNemuro

^{• Wave St.} Results: Max. surge levels (25 m/s capped)

Kiritappu

JCCE

2018

T1/3 (sec)

Summaries

- Winter Low Pressure System (WLPS) 2014 induced the record-break surge level in Hokkaido.
- A series of surge and wave coupled simulations was conducted by using the coupled model of SuWAT
 - wind speed capped wave dependent drag coef.
 - wave-current interaction-induced bottom drag coef.
- * Leveling off at 20 m/s was best for waves at one station
- * Leveling off at 25 m/s was best for surges at 4 station
- * Discrepancy of the specific wind speed for the leveling off has to be investigated.
 - * tides?
 - * more observed wave data?
 - * stronger typhoons/hurricanes? 京都大学 Pacific

Questions or comments ?

ICCE

2018

Thank you very much

