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Motivation: wave-generated sand ripples

http://www.naturephotoblog.com/2012/02/28/10356/alex-mustard

Video recording of a laboratory test in this study

Coastal waves generate (vortex) 
ripples on a sandy seabed.

Coherent vortex motion is the 
dominant feature of local boundary 
layer flow

Ripples enhanced flow resistance 
(bottom shear stress)



Form drag for oscillatory flows over vortex ripples
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Form drag Skin friction

 Form drag is usually much larger than skin 
friction

 Important for understanding wave energy 
dissipation Ed, wave-current interaction, etc.

 Can be indirectly measured from Ed.

 Very little direct and full-scale measurements
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Research facility: oscillatory water tunnel

Initial sand bed (20cm deep)

Programmable
piston

Test channel (10m long, cross section: 40cm X50cm)

• 10 m-long test section with a 40cm-by-
50 cm cross section

• Oscillatory flow with Ab<2m and T>3s

• 20cm-deep movable bed (9 m long)

• Precise flow generation

• A laser-based bottom profiler for 
measuring ripple shape

• A PIV system for 2D flow measurements



A pressure-based measurement technique

• pP-po drives the oscillatory flow.
• pP increases as bottom shear stress increases.
• po only depends on flow condition.
• For a pair of tests (flat bed vs. rippled bed) the difference in pP is proportional to change in total bottom 

shear stress
• Same pressure difference inside the piston-end riser
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Test conditions

Highlights:

• Coarse sand (d50=0.51mm)
• All 2D equilibrium ripples
• 11 tests with 

 Rew=9.1⋅104-7.5⋅105.
 T=6.25-10 s 
 Ab=0.3-1.0 m, U∞=0.3-1.0 m/s
 Ripple height HR: 77-207 mm
 Ripple length λ: 396-1242 mm
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Data correction
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filter out high-freq. noise

correct for piston movement

remove even harmonics

Example: Ta040 (Ubm=0.4m/s, T=6.25s, HR=96mm, λ=479mm)

Correction:
• Remove high-freq. harmonics (>5th harmonic)
• Correct for imperfect piston movement
• Remove even harmonics

Only keep 1st , 3rd and 5th harmonics



First-harmonic total bottom shear stress 
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• 1st harmonic is the dominant one

• Amplitude decreases with roughness or
shields parameter: wash-off by strong flows

• In phase with free-stream velocity

Ab/HR: inverse of relative ripple height (∞ for flat bed)



Higher-order harmonics
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• 3rd and 5th harmonics suffer from large 
experimental error (6 of 11 tests are 
acceptable)

• Magnitude is of O(0.01), 5th harmonic is even
larger than the 3rd harmonic

• No clear trend of variation



Intra-period variation of total bottom shear stress

Hypothesis: multiple peaks are associated with coherent vortex motion.

Example: Ta060 (Ubm=0.60m/s, T=6.25s, HR=109mm, λ=508mm)



Comparisons with PIV-based measurements

Control volume
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Some algebra total bottom shear stress can be 
estimated with the velocity profile at trough

Reasonable agreement for major feature (1st harmonic), 
but poor agreement higher-order harmonics.



Conclusion

• A pressure-based technique is developed for measuring total bottom 
shear stress over wave-generated vortex ripples.

• Total bottom shear stress is dominated by its first-harmonic Fourier 
component, which is almost in-phase with the free-stream velocity.

• PIV measurements suggest that coherent vortex motion controls the
intra-period variation of total bottom shear stress.

• Good agreement between pressure- and PIV-based measurements for 
the first harmonic.


