

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

The State of the Art and Science of Coastal Engineering

Total bottom shear stress for oscillatory flow over wave-generated sand ripples

Yuan Jing, Ph.D., Assistant Prof.

National University of Singapore, Dept. of Civil and Environ. Eng.

Wang Dongxu, Ph.D. student

National University of Singapore, Dept. of Civil and Environ. Eng.

Motivation: wave-generated sand ripples

http://www.naturephotoblog.com/2012/02/28/10356/alex-mustard

Coastal waves generate (vortex) ripples on a sandy seabed.

Coherent vortex motion is the dominant feature of local boundary layer flow

Ripples → enhanced flow resistance (bottom shear stress)

Form drag for oscillatory flows over vortex ripples

Form drag

- Form drag is usually much larger than skin friction
- Important for understanding wave energy dissipation E_d, wave-current interaction, etc.
- \clubsuit Can be indirectly measured from E_d .
- Very little <u>direct</u> and <u>full-scale</u> measurements

Research facility: oscillatory water tunnel

- 10 m-long test section with a 40cm-by-50 cm cross section
- Oscillatory flow with Ab<2m and T>3s
- 20cm-deep movable bed (9 m long)
- Precise flow generation
- A laser-based bottom profiler for measuring ripple shape
- A PIV system for 2D flow measurements

A pressure-based measurement technique

- p_{P} - p_{o} drives the oscillatory flow.
- p_{p} increases as bottom shear stress increases.
- p_o only depends on flow condition.
- For <u>a pair of tests (flat bed</u> vs. <u>rippled bed</u>) the difference in **p**_P is proportional to change in <u>total bottom</u> shear stress
- Same pressure difference inside the piston-end riser

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 - August 3, 2018

2018

Test conditions

$$u_{\downarrow}(t) = U_{\downarrow} \cos(\frac{2\rho}{T}t)$$

Highlights:

• Coarse sand (d₅₀=0.51mm)

 $\operatorname{Re}_{w} = \frac{A_{b}U_{\pm}}{n}$

- All 2D equilibrium ripples
- 11 tests with
 - > Re_{w} =9.1·10⁴-7.5·10⁵.
 - ➤ T=6.25-10 s
 - ➤ A_b=0.3-1.0 m, U_∞=0.3-1.0 m/s
 - \blacktriangleright Ripple height H_R: 77-207 mm
 - > Ripple length λ : 396-1242 mm

Test ID	A_b [m]	T [s]	ψ_{wmd}	$U_{\infty} [{\rm m/s}]$	$H_R \; [\mathrm{mm}]$	$\lambda \; [m mm]$	No. of ripples	duration [h]	Re_w
Ta030	0.30	6.25	0.064	0.302	77	396	21	4.0	$9.1\cdot 10^4$
Ta040	0.40	6.25	0.105	0.402	92	456	18	3.2	$1.6\cdot 10^5$
Ta050	0.50	6.25	0.153	0.503	96	479	17	1.4	$2.5\cdot 10^5$
Ta060	0.60	6.25	0.21	0.603	109	581	14	1.0	$3.6\cdot 10^5$
Ta080	0.80	6.25	0.344	0.804	127	689	12	0.5	$6.4\cdot 10^5$
Ta100	1.00	6.25	0.506	1.005	119	803	11	0.3	$1.0\cdot 10^6$
Tc045	0.60	8.33	0.118	0.452	124	607	13	1.1	$2.7\cdot 10^5$
Tc060	0.80	8.33	0.194	0.603	142	742	12	0.8	$4.8\cdot 10^5$
Tc075	1.00	8.33	0.285	0.754	178	998	9	0.3	$7.5\cdot 10^5$
Td044	0.70	10	0.107	0.44	186	829	10	3.3	$3.1\cdot 10^5$
Td057	0.90	10	0.165	0.565	207	1242	7	1.5	$5.1 \cdot 10^5$

Data correction

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 – August 3, 2018

First-harmonic total bottom shear stress

 A_b/H_R : inverse of relative ripple height ($\rightarrow \infty$ for flat bed)

$$f_{t} = \frac{2t_{b}}{rU_{\infty}^{2}} = \operatorname{Re}\left(\sum_{n=1,3,5} f^{(n)}e^{inWt}\right) = \sum_{n=1,3,5} f_{n}\cos(nWt + f_{fn})$$

- 1st harmonic is the dominant one
- Amplitude decreases with roughness or shields parameter: wash-off by strong flows
- In phase with free-stream velocity

Higher-order harmonics

$$f_{t} = \frac{2t_{b}}{rU_{\infty}^{2}} = \operatorname{Re}\left(\sum_{n=1,3,5} f^{(n)}e^{inWt}\right) = \sum_{n=1,3,5} f_{n}\cos(nWt + f_{fn})$$

- 3rd and 5th harmonics suffer from large • experimental error (6 of 11 tests are acceptable)
- Magnitude is of O(0.01), 5th harmonic is even larger than the 3rd harmonic

ENGINEERING 2018

No clear trend of variation •

Intra-period variation of total bottom shear stress

Hypothesis: multiple peaks are associated with coherent vortex motion.

Comparisons with PIV-based measurements

Some algebra \rightarrow total bottom shear stress can be estimated with the velocity profile at trough

$$t_{b} = \frac{\partial}{\partial t} \left[\int_{0}^{h} \left(u - u_{\infty} \right) dz \right] - \frac{\partial u_{\infty}}{\partial t} \frac{V_{ripple}}{/}$$

Reasonable agreement for major feature (1st harmonic), but poor agreement higher-order harmonics.

ON COASTAL

36TH INTERNATIONAL CONFERENCE

Baltimore, Maryland | July 30 - August 3, 2018

ENGINEERING 2018

Conclusion

- A pressure-based technique is developed for measuring total bottom shear stress over wave-generated vortex ripples.
- Total bottom shear stress is dominated by its first-harmonic Fourier component, which is almost in-phase with the free-stream velocity.
- PIV measurements suggest that coherent vortex motion controls the intra-period variation of total bottom shear stress.
- Good agreement between pressure- and PIV-based measurements for the first harmonic.

