Numerical Investigation of Plunging Breakers Over a Porous Artificial Surf Reef

Bjarne Jensen, DHI Karl-Søren Geertsen, MSc-student at DTU Johan Rønby, DHI (prently at STROMNING) Simon B. Mortensen, DHI Kasper Kærgaard, DHI

Agenda

- Project background Scope and Objectives
- Numerical model
- Model validation
- Palm Beach simulations
- Results
- Conclusions

Scope and Objectives

Palm Beach, Queensland, Australia

Erosion Problems on Palm Beach

Overview of Coastal Protection Schemes

Option 1: 750.000 m3 Beach Nourishment Option 2: Added Submerged Control Structure

Option 3: Added Artificial Headlands

Surf reef design

- Several possible reef designs were described in Mortensen et al (2015)
- The selected design for the present investigation contains approx. 53,000 m3 material
- Difference in slope angle on left and right side of the reef creates a "right-hander" breaking wave peeling from left to right seen from the surfers perspective
- Reef crest level is 1.5m below SWL

Scope and objectives

- Surf reefs are relatively new in terms of design methods
- Strong design basis exists for traditional coastal protection structures
- These methods do not have the additional aim of generating good surfing waves
- Existing methods and models used for designing surf reefs normally don't include the effect of the actual porous reef structure (only seen as impermeable)
- In this study we investigate:
 - 1) Can a detailed CFD porosity model be used for designing surf reefs?
 - 2) What is the effect of the porous reef on breaking point, peeling velocity, breaking intensity, and length of surf ride?

Numerical model

Numerical model description

- The model is based on OpenFoam® with a three dimensional finite volume solution of Navier-Stokes equations on a collocated grid arrangement
- The free surface interface is treated by the Volume-of-Fluid (VOF) method
- Wave generation and absorption is based on relaxation zones as implemented in Jacobsen et al (2012)
- The porous reef structure is included by the porous media VARANS equation implemented in Jensen et al (2014a)

Model validation

Wave transformation over submerged bar

- Test case based on experiments in Beji and Battjes (1993)
- Validates the model for non-linear wave propagation and wave-wave interaction
- Results are sensitive to mesh resolution
 and Courant number
- Good results are obtained with Co=0.1 and a mesh resolution of approx. 10 cells/wave height

Wave breaking on a sloping bed

- Test case based on experiments in Ting and Kirby (1994)
- Both spilling and plunging breakers simulated
- Three-dimensional model gives acceptable results
- Captures breaking point and surface
 envelope
- Provides guidance to the required grid resolution in the surf reef simulations

Wave interaction with porous media

- The surf reef is treated as a porous media and is handled by the VARANS equations implemented in OpenFoam
- Validation tests from Jensen et al (2014a) and Jensen et al (2014b) confirms the capabilities to simulate wave interaction with porous media

4.

Palm Beach Simulations

Palm Beach model setup

- Model domain is 400m by 600m with an offshore bed level in -14m
- Hexahedral dominated mesh
- 10 cells/wave height or more in the breaking zone (based on validation cases)
- Porous reef armour layer with a thickness of 1.6m and d50=0.8m
- Total of approx. 12 million cells
- Inlet relaxation zones of 1-1.5 times the wave length

Palm Beach simulation cases

- Four wave events selected for the investigation
- All event are classified as plunging based on the surf similarity parameter
- The maximum wave in each wave event is simulated as a regular stream function wave

Wave event	date	$H_s(m)$	$H_{1/10}$	$T_p(s)$	$\xi_{1/10}$	$\beta_w(^\circ)$	β
1	19/03/2012	1.18	1.50	9.95	0.85	89.77	-14.61
2	5/10/2010	1.62	2.06	9.92	0.72	79.77	-24.61
3	12/01/2012	1.11	1.41	9.06	0.80	104.77	0.39
4	25/10/2008	1.58	2.01	13.10	0.97	94.77	-9.61

Results

DHÌ

Wave breaking point location

- The flow in and out of the porous reef during wave transformation along the reef gives a loss of energy
- Reduces the wave height and wave steepness
- Delays the wave breaking and moves the breaking point closer to the reef crest
- Breaking point is moved between 6m and 8m closer to the reef crest (toward the shore)

Peeling speed and length of surf ride

Up [km/h]

- Magnitude of the horizontal velocity of the breaking point
- Peeling speed is in general reduced
- Gives a more uniform speed along the surf ride
- Reduces the peeling speed to be within a more surfable range

(a) Peeling speed plot for representative wave event 1

(c) Peeling speed plot for representative wave event 3

⁽b) Peeling speed plot for representative wave event 2

⁽d) Peeling speed plot for representative wave event 4

Breaking intensity

- Ratio between width and length of the breaker tube
- Determined by vertical planes through the breaking point
- The porous reef reduces the breaking intensity compared to an impermeable bed

(b) Development of breaking intensity presented for case 2

Conclusions

Conclusions

- The breaking point is displaced from 6m to 8m closer to the crest (onshore) of the reef
- The peeling speed is more than 12% higher on an impermeable reef compared to a porous reef
- The breaking intensity is up to 18% higher on an impermeable reef compared to a porous reef structure
- Including the porous reef in the numerical model as a design tool has proven to be necessary to correctly model breaking point, peeling speed and breaking intensity
- These parameters form the basis for defining a guideline for safety

References

- Beji, S., & Battjes, J. A. (1993). Experimental investigation of wave propagation over a bar. *Coastal Engineering*, *19*(1–2), 151–162.
- van Ettinger, H. D. (2005). Artificial surf reef design. MSc-Thesis, Delft University of Technology.
- Henriquez, M. (2004). Artificial Surf Reefs. MSc-Thesis, Delft University of Technology.
- Jensen, B., Jacobsen, N. G., & Christensen, E. D. (2014a). Investigations on the porous media equations and resistance coefficients for coastal structures. *Coastal Engineering*, *84*, 56–72.
- Jensen, B., Christensen, E. D., & Jacobsen, N. G. (2014b). Simulation of extreme events of oblique wave interaction with porous breakwater structures. In *International Conference on Coastal Engineering* (pp. 1–13).
- Mead, S. (2003). Keynote address : Surfing Science. *Proceedings of the 3° International Surfing Reef Symposium*, 1–36.
- Mortensen, S. B., Hibberd, W. J., Kaersgaard, K., Kristensen, S. E., Deigaard, R. & Hunt, S. (2015), Concept Design of a Multipurpose Submerged Control Structure for Palm Beach, Gold Coast Australia. Australasian Coast and Ports Conference, Auckland.
- Mortensen, S. B., & Henriquez, M. (2012). Advanced Numerical Modeling of Artificial Surfing Reefs. *REEF Journal 6th and 7th Surfing Science and Multi Purpose Reef Symposia*, 2, 64–72.
- Scarfe, B. E., Elwany, M. H. S., Mead, S. T., & Black, K. P. (2003). Science of Surfing Waves and Surfing Breaks A Review. *Journal of Coastal Research*.
- Ting, F. C. K., & Kirby, J. T. (1994). Observation of undertow and turbulence in a laboratory surf zone. *Coastal Engineering*, 24, 51–80.

Thank you

Kasper Kærgaard DHI kak@dhigroup.com