

Integrated Modelling To Predict Landscape Evolution, Flooding, And Water Quality In Jamaica Bay, NY Heather D. Smith, Ph.D., P.E., Philip Orton, Ph.D., Eric W. Sanderson, Ph.D., Jordan Fischbach, Ph.D.

Jamaica Bay, NY

Jamaica Bay, NY

Jamaica Bay, NY

Process & Goals

Reduce flood risk

Improve habitat and ecosystem function

Improve water quality

Process & Goals

Public Agency & Stakeholder Meetings

Narrowing Rockaway Inlet

> Shallowing **Grassy Bay**

> Whole Bay Shallowing

Marsh Island Restoration

Perimeter Restoration

Integrated Modelling Framework Reduce flood risk

Improve habitat and ecosystem function

Improve water quality

Modelling Framework

Limitations of the Analysis

- Calculations performed at 30 m resolution
- Horizontal marsh evolution at the boundaries in visionmaker marsh (VMM) is constrained by the built "mask" and some areas that were not modeled
- Vertical marsh processes are modeled, but these do not include:
 - Wave impact
 - Horizontal edge erosion
 - Marsh chemistry
 - Sediment dynamics
- Storm surge flood risk reduction was not considered

Current Landscape

Future Without Action - +43 cm SLR

10% loss in upland

Future Without Action

Sensitivity Tests

Sensitivity Tests

Sensitivity Tests

Landscape Evolution

- Grassy Bay Shallowing (GS)
 - 1% loss of marsh and scrub
- Whole Bay Shallowing (JS)
 - 2.5% loss of marsh, 11% loss in salt scrub
- Inlet Narrowing (IN)
 - 3% loss of marsh and scrub
- Wetland Restoration (WR)
 - 132% gain in marsh, 1.5% gain in scrub
- Perimeter Restoration (PR)
 - 20% gain in marsh, 8% loss in scrub

Landscape Evolution

Inundation Change

- Grassy Bay Shallowing (GS)
 - 3.5% reduction in inundated area
- Whole Bay Shallowing (JS)
 - 31% reduction in inundated area
- Inlet Narrowing (IN)
 - 25% reduction in inundated area
- Wetland Restoration (WR)
 - 7% reduction in inundated area
- Perimeter Restoration (PR)
 - 1% gain in inundated area

Inundation Change

Perimeter Restoration - Inundated Areas

Water Quality Change

Test	Grassy Bay	Whole Bay
FW	6.2 days	17.0 days
GS	-66.9%	-12.2%
JS	-58.1%	-24.0%
IN	-25.5%	-18.3%
WR	+58.6%	+6.2%
PR	+33.0%	+3.2%

Conclusions & Observations

- Marsh island restoration provides most benefit for marsh and scrub habitats.
- Whole Bay shallowing provides most benefit for inundation reduction.
- Whole Bay shallowing provides most benefit for residence time reduction.
- Restoration options considered here are not able to address all three metrics at the same time.
 - Further testing (not presented here) considered options in combination.
- Uncertainty in sea level rise dwarfs the changes observed in any single sensitivity test
- Linear response in the tide was observed with increase in sea level